终身会员
搜索
    上传资料 赚现金

    模块二 知识全整合专题4 图形的性质 第2讲 三角形的基本性质(含解析) -最新中考数学二轮专题复习训练

    立即下载
    加入资料篮
    模块二 知识全整合专题4 图形的性质 第2讲 三角形的基本性质(含解析) -最新中考数学二轮专题复习训练第1页
    模块二 知识全整合专题4 图形的性质 第2讲 三角形的基本性质(含解析) -最新中考数学二轮专题复习训练第2页
    模块二 知识全整合专题4 图形的性质 第2讲 三角形的基本性质(含解析) -最新中考数学二轮专题复习训练第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模块二 知识全整合专题4 图形的性质 第2讲 三角形的基本性质(含解析) -最新中考数学二轮专题复习训练

    展开

    这是一份模块二 知识全整合专题4 图形的性质 第2讲 三角形的基本性质(含解析) -最新中考数学二轮专题复习训练,共35页。试卷主要包含了知识全整合等内容,欢迎下载使用。


    专题4 图形的性质
    第2讲 三角形的基本性质
    一、三角形三边的性质
    1.三角形两边之和大于第三边,两边之间小于第三边;两边的长度为a、b(a>b),第三边的长度为x,则a-b2.三角形具有稳定性;
    二、三角形的内角和外角的性质
    1.三角形的内角和定理:三角形三个内角的和为180°;
    2.三角形的外角性质:三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外有大于任意一个与它不相邻的内角;
    3.直角三角形两个锐角互余;
    4.三角形三个外角的和为360°;
    三、三角形重要的线段及性质
    1.中线
    (1)中线的两个端点:顶点,中点;
    (2)中线的性质:中线平分三角形的面积;
    (3)三条中线的交点:重心;
    2.高线
    (1)高线的两个端点:顶点,垂足;
    (2)高线的性质:三角形的面积等于底乘以高除以2;
    (3)三条高线的交点:垂心,垂心的位置与三角形的形状有关;
    3.角平分线
    (1)角平分线的端点:顶点,交点;
    (2)角平分线的性质:角平分线上的点到角两边的距离要相等;
    (3)三条角平分线的交点:内心,内心到三条边的距离相等;
    4.中位线
    (1)中位线的端点:中点,中点;
    (2)中位线的性质:三角形的中位线平行于第三边,并且等于第三边的一半;
    5.三角形中常见的模型
    1.“8”字模型
    (1)基本图形
    (2)主要的性质

    2.飞镖模型
    (1)基本图形
    (2)主要性质
    3.双内角平分线
    (1)基本图形
    (2)主要性质

    4,双外角平分线
    (1)基本图形
    (2)主要性质

    5.内外角平分线
    (1)基本图形
    (2)主要性质

    6.角平分线与高模型
    (1)基本图形
    (2)主要性质

    《义务教育数学课程标准》2022年版,学业质量要求:
    1.理解三角形及相关概念,了解三角形的稳定性;
    2.知道三角形的特征;
    【例1】(2023·江苏盐城·统考中考真题)
    1.下列每组数分别表示3根小木棒的长度(单位:cm),其中能搭成一个三角形的是( )
    A.5,7,12B.7,7,15C.6,9,16D.6,8,12
    【变1】(2023·河北·统考中考真题)
    2.四边形的边长如图所示,对角线的长度随四边形形状的改变而变化.当为等腰三角形时,对角线的长为( )

    A.2B.3C.4D.5
    【例1】(2023·山东青岛·统考中考真题)
    3.如图,直线,,,则的度数为( )

    A.B.C.D.
    【变1】(2023·辽宁·统考中考真题)
    4.如图,在三角形纸片中,,点是边上的动点,将三角形纸片沿对折,使点落在点处,当时,的度数为 .

    【例1】(2022·湖北荆门·统考中考真题)
    5.如图,点G为△ABC的重心,D,E,F分别为BC,CA,AB的中点,具有性质:AG:GD=BG:GE=CG:GF=2:1.已知△AFG的面积为3,则△ABC的面积为 .
    【变1】(2023·山东青岛·统考一模)
    6.【阅读理解】
    三角形内角和定理告诉我们:如图①,三角形三个内角的和等于.
    如图②,在中,有,点D是延长线上一点.由平角的定义可得,所以.从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.
    【初步应用】
    如图③,点D,E分别是的边延长线上一点,
    (1)若,则______;
    (2)若,则______;
    (3)若,则______.
    【拓展延伸】
    如图④,点D,E分别是的边延长线上一点,
    (4)若,分别作和的平分线交于点O,则______;
    (5)若,分别作和的三等分线交于点O,且,,则______;
    (6)若,分别作和的n等分线交于点O,且,,则______.
    【例1】(2023·广西·统考中考真题)
    7.如图,在边长为2的正方形中,E,F分别是上的动点,M,N分别是的中点,则的最大值为 .

    【变1】(2023·山东潍坊·统考中考真题)
    8.如图,在中,平分,,重足为点E,过点E作、交于点F,G为的中点,连接.求证:.

    一、选择题
    (2022·湖南永州·统考中考真题)
    9.下列多边形具有稳定性的是( )
    A.B.C.D.
    (2023·福建·统考中考真题)
    10.若某三角形的三边长分别为3,4,m,则m的值可以是( )
    A.1B.5C.7D.9
    (2022·河北·统考中考真题)
    11.平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是( )
    A.1B.2C.7D.8
    12.如图所示的“箭头”图形中,,,,则图中的度数是( )

    A.B.C.D.
    (2023·内蒙古·统考中考真题)
    13.如图,在菱形中,,,顺次连接菱形各边中点、、、,则四边形的周长为( )

    A.B.C.D.
    二、填空题
    (2023·吉林·统考中考真题)
    14.如图,钢架桥的设计中采用了三角形的结构,其数学道理是 .
    (2020·江苏镇江·统考中考真题)
    15.如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于 .

    (2022·黑龙江哈尔滨·统考中考真题)
    16.在中,为边上的高,,,则是 度.
    (2022·江苏常州·统考中考真题)
    17.如图,在中,是中线的中点.若的面积是1,则的面积是 .
    (2023·青海西宁·统考中考真题)
    18.在中,,,点D在边上,连接,若为直角三角形,则的度数是 .
    (2023·江苏南通·统考中考真题)
    19.如图,四边形的两条对角线,互相垂直,,,则的最小值是 .

    三、解答题
    (2022·山东青岛·统考中考真题)
    20.【图形定义】
    有一条高线相等的两个三角形称为等高三角形.
    例如:如图①.在和中,分别是和边上的高线,且,则和是等高三角形.
    【性质探究】
    如图①,用,分别表示和的面积.
    则,

    ∴.
    【性质应用】
    (1)如图②,D是的边上的一点.若,则__________;
    (2)如图③,在中,D,E分别是和边上的点.若,,,则__________,_________;
    (3)如图③,在中,D,E分别是和边上的点,若,,,则__________.
    (2023重庆模拟)
    21.如图①,在中,与的平分线相交于点P.

    (1)如果,求的度数;
    (2)如图②,作外角,的角平分线交于点Q,试探索、之间的数量关系.
    (3)如图③,延长线段、交于点E,中,存在一个内角等于另一个内角的2倍,求的度数.
    (2023·北京·统考中考真题)
    22.在中、,于点M,D是线段上的动点(不与点M,C重合),将线段绕点D顺时针旋转得到线段.

    (1)如图1,当点E在线段上时,求证:D是的中点;
    (2)如图2,若在线段上存在点F(不与点B,M重合)满足,连接,,直接写出的大小,并证明.
    (2023·山东东营·统考中考真题)
    23.(1)用数学的眼光观察.
    如图,在四边形中,,是对角线的中点,是的中点,是的中点,求证:.
    (2)用数学的思维思考.
    如图,延长图中的线段交的延长线于点,延长线段交的延长线于点,求证:.
    (3)用数学的语言表达.
    如图,在中,,点在上,,是的中点,是的中点,连接并延长,与的延长线交于点,连接,若,试判断的形状,并进行证明.
    (2023·山西·统考中考真题)
    24.阅读与思考:下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.
    任务:
    (1)填空:材料中的依据1是指:_____________.
    依据2是指:_____________.
    (2)请用刻度尺、三角板等工具,画一个四边形及它的瓦里尼翁平行四边形,使得四边形为矩形;(要求同时画出四边形的对角线)
    (3)在图1中,分别连接得到图3,请猜想瓦里尼翁平行四边形的周长与对角线长度的关系,并证明你的结论.

    瓦里尼翁平行四边形
    我们知道,如图1,在四边形中,点分别是边,的中点,顺次连接,得到的四边形是平行四边形.

    我查阅了许多资料,得知这个平行四边形被称为瓦里尼翁平行四边形.瓦里尼翁是法国数学家、力学家.瓦里尼翁平行四边形与原四边形关系密切.

    ①当原四边形的对角线满足一定关系时,瓦里尼翁平行四边形可能是菱形、矩形或正方形.
    ②瓦里尼翁平行四边形的周长与原四边形对角线的长度也有一定关系.
    ③瓦里尼翁平行四边形的面积等于原四边形面积的一半.此结论可借助图1证明如下:
    证明:如图2,连接,分别交于点,过点作于点,交于点.
    ∵分别为的中点,∴.(依据1)

    ∴.∵,∴.
    ∵四边形是瓦里尼翁平行四边形,∴,即.
    ∵,即,
    ∴四边形是平行四边形.(依据2)∴.
    ∵,∴.同理,…
    参考答案:
    1.D
    【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.
    【详解】A、,不能构成三角形,故此选项不合题意;
    B、,不能构成三角形,故此选项不合题意;
    C、,不能构成三角形,故此选项不合题意;
    D、,能构成三角形,故此选项符合题意.
    故选:D.
    【点睛】此题考查了三角形三边关系,看能否组成三角形的简便方法:看较小的两个数的和能否大于第三个数.
    2.B
    【分析】利用三角形三边关系求得,再利用等腰三角形的定义即可求解.
    【详解】解:在中,,
    ∴,即,
    当时,为等腰三角形,但不合题意,舍去;
    若时,为等腰三角形,
    故选:B.
    【点睛】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题.
    3.B
    【分析】首先根据平行线的性质得,再由三角形的外角定理可得的度数.
    【详解】解:∵,,
    ∴,
    又∵,
    ∴.
    故选:B.
    【点睛】此题主要考查了平行线的性质,三角形的外角定理,准确识图,熟练掌握平行线的性质和三角形的外角定理是解答此题的关键.
    4.或
    【分析】分两种情况考虑,利用对称的性质及三角形内角和等知识即可完成求解.
    【详解】解:由折叠的性质得:;
    ∵,
    ∴;
    ①当在下方时,如图,
    ∵,
    ∴,
    ∴;

    ②当在上方时,如图,
    ∵,
    ∴,
    ∴;

    综上,的度数为或;
    故答案为:或.
    【点睛】本题考查了折叠的性质,三角形内角和,注意分类讨论.
    5.18
    【分析】根据线段比及三角形中线的性质求解即可.
    【详解】解:∵CG:GF=2:1,△AFG的面积为3,
    ∴△ACG的面积为6,
    ∴△ACF的面积为3+6=9,
    ∵点F为AB的中点,
    ∴△ACF的面积=△BCF的面积,
    ∴△ABC的面积为9+9=18,
    故答案为:18.
    【点睛】题目主要考查线段比及线段中点的性质,熟练掌握线段中点的性质是解题关键.
    6.(1);(2);(3);(4)60;(5)100;(6).
    【分析】(1)根据三角形外角的性质求解即可;
    (2)根据三角形外角的性质结合三角形内角和定理求解即可;
    (3)由(2)同理求解即可;
    (4)根据角平分线的定义可得出,,即可求出,再结合(2)即得出,最后由三角形内角和定理求解即可;
    (5)由,,即可求出,再结合(2)即得出,最后由三角形内角和定理求解即可;
    (6)由,,即可求出,结合(3)可知,最后由三角形内角和定理求解即可.
    【详解】(1)由三角形外角的性质可得出.
    故答案为:;
    (2)∵,,
    ∴.
    ∵,,
    ∴.
    故答案为:;
    (3)由(2)同理可得.
    ∵,,

    故答案为:;
    (4)∵和的平分线交于点O,
    ∴,,
    ∴.
    由(2)可知,
    ∴,
    ∴.
    故答案为:;
    (5)∵,,
    ∴.
    由(2)可知,
    ∴,
    ∴.
    故答案为:100;
    (6)∵,,
    ∴.
    由(3)可知,
    ∴,
    ∴.
    故答案为:.
    【点睛】本题考查三角形内角和定理的应用,三角形外角的性质,角平分线的定义和角的n等分点的定义.利用数形结合的思想是解题关键.
    7.
    【分析】首先证明出是的中位线,得到,然后由正方形的性质和勾股定理得到,证明出当最大时,最大,此时最大,进而得到当点E和点C重合时,最大,即的长度,最后代入求解即可.
    【详解】如图所示,连接,

    ∵M,N分别是的中点,
    ∴是的中位线,
    ∴,
    ∵四边形是正方形,
    ∴,
    ∴,
    ∴当最大时,最大,此时最大,
    ∵点E是上的动点,
    ∴当点E和点C重合时,最大,即的长度,
    ∴此时,
    ∴,
    ∴的最大值为.
    故答案为:.
    【点睛】此题考查了正方形的性质,三角形中位线的性质,勾股定理等知识,解题的关键是熟练掌握以上知识点.
    8.证明见解析
    【分析】如图,延长交于,证明,则,证明,则,即,解得,即是的中点,是的中位线,进而可得.
    【详解】证明:如图,延长交于,

    ∵平分,,
    ∴,,
    ∵,,,
    ∴,
    ∴,
    ∵,
    ∴,,
    ∴,
    ∴,即,解得,
    ∴是的中点,
    又∵是的中点,
    ∴是的中位线,
    ∴.
    【点睛】本题考查了角平分线,全等三角形的判定与性质,相似三角形的判定与性质,中位线.解题的关键在于对知识的熟练掌握与灵活运用.
    9.D
    【分析】利用三角形具有稳定性直接得出答案.
    【详解】解:三角形具有稳定性,四边形、五边形、六边形都具有不稳定性,
    故选D.
    【点睛】本题考查三角形的特性,牢记三角形具有稳定性是解题的关键.
    10.B
    【分析】根据三角形的三边关系求解即可.
    【详解】解:由题意,得,即,
    故的值可选5,
    故选:B.
    【点睛】本题考查了三角形的三边关系,熟练掌握三角形的三边关系是解答的关键.
    11.C
    【分析】如图(见解析),设这个凸五边形为,连接,并设,先在和中,根据三角形的三边关系定理可得,,从而可得,,再在中,根据三角形的三边关系定理可得,从而可得,由此即可得出答案.
    【详解】解:如图,设这个凸五边形为,连接,并设,
    在中,,即,
    在中,,即,
    所以,,
    在中,,
    所以,
    观察四个选项可知,只有选项C符合,
    故选:C.
    【点睛】本题考查了三角形的三边关系定理,通过作辅助线,构造三个三角形是解题关键.
    12.C
    【分析】延长交于点,延长交于点,过点作的平行线,根据平行线的性质即可解答.
    【详解】解:如图,延长交于点,延长交于点,过点作的平行线,


    ,,


    ,,

    故选:C.
    【点睛】本题考查了平行线的判定及性质,三角形外角的定义和性质,作出正确的辅助线是解题的关键.
    13.C
    【分析】首先利用三角形的中位线定理证得四边形为平行四边形,再求对角线长度,然后利用三角形中位线定理求出此平行四边形边长即可求出周长.
    【详解】解:如图,连接、,相交于点,

    点分别是边的中点,
    ,,
    ,同理,
    四边形是平行四边形,
    四边形是菱形, ,,
    对角线互相垂直,


    ,,
    是等边三角形,

    在中,,,


    ,,
    四边形的周长为.
    故选:C.
    【点睛】本题考查了中点四边形的知识,解题的关键是灵活运用三角形的中位线定理,菱形的性质及平行四边形的判定与性质进行计算.
    14.三角形具有稳定性
    【分析】根据三角形结构具有稳定性作答即可.
    【详解】解:其数学道理是三角形结构具有稳定性.
    故答案为:三角形具有稳定性.
    【点睛】本题考查了三角形具有稳定性,解题的关键是熟练的掌握三角形形状对结构的影响.
    15.
    【分析】取的中点,的中点,连接,,,,根据平移的性质和三角形的三边关系即可得到结论.
    【详解】解:取的中点,的中点,连接,,,,
    将平移5个单位长度得到△,
    ,,
    点、分别是、的中点,


    即,
    的最小值等于,
    故答案为:.
    【点睛】本题考查了平移的性质,三角形的三边关系,熟练掌握平移的性质是解题的关键.
    16.40或80##80或40
    【分析】根据题意,由于类型不确定,需分三种情况:高在三角形内部、高在三角形边上和高在三角形外部讨论求解.
    【详解】解:根据题意,分三种情况讨论:
    ①高在三角形内部,如图所示:
    在中,为边上的高,,



    ②高在三角形边上,如图所示:
    可知,

    故此种情况不存在,舍弃;
    ③高在三角形外部,如图所示:
    在中,为边上的高,,



    综上所述:或,
    故答案为:或.
    【点睛】本题考查求角度问题,在没有图形的情况下,必须考虑清楚各种不同的情况,根据题意分情况讨论是解决问题的关键.
    17.2
    【分析】根据的面积的面积,的面积的面积计算出各部分三角形的面积.
    【详解】解:是边上的中线,为的中点,
    根据等底同高可知,的面积的面积,
    的面积的面积的面积,
    故答案为:2.
    【点睛】本题考查了三角形的面积,解题的关键是利用三角形的中线平分三角形面积进行计算.
    18.或
    【分析】由题意可求出,故可分类讨论①当时和②当时,进而即可求解.
    【详解】解:∵,,
    ∴.
    ∵为直角三角形,
    ∴可分类讨论:①当时,如图1,

    ∴;
    ②当时,如图2,

    综上可知的度数是或.
    故答案为:或.
    【点睛】本题主要考查等腰三角形的性质,三角形内角和定理.解答本题的关键是明确题意,利用等腰三角形的性质和分类讨论的数学思想解答.
    19.
    【分析】设的交点为,的中点分别是,连接,先证,由此得当最小时,最小,再根据“两点之间线段最短”得,再证四边形是矩形,且,根据勾股定理的,进而求得的最小值.
    【详解】解:设的交点为,的中点分别是,连接,
    互相垂直,
    和为直角三角形,且分别为斜边,


    当最小时,最小,再根据“两点之间线段最短”得,
    当点在线段上时,最小,最小值为线段的长,
    分别为的中点,
    是的中位线,

    同理,



    四边形是平行四边形,


    四边形是矩形,
    在中,,

    的最小值为,
    的最小值为.

    故答案为:.
    【点睛】此题只要考查了矩形的判定和性质,三角形的性质,三角形的中位线定理,线段的性质,勾股定理等,熟练掌握矩形的判定和性质,三角形的中位线定理,理解直角三角形斜边上的中线等于斜边的一半,两点之间线段最短是解答此题的关键.
    20.(1)
    (2);
    (3)
    【分析】(1)由图可知和是等高三角形,然后根据等高三角形的性质即可得到答案;
    (2)根据,和等高三角形的性质可求得,然后根据和等高三角形的性质可求得;
    (3)根据,和等高三角形的性质可求得,然后根据,和等高三角形的性质可求得.
    【详解】(1)解:如图,过点A作AE⊥BC,
    则,
    ∵AE=AE,
    ∴.
    (2)解:∵和是等高三角形,
    ∴,
    ∴;
    ∵和是等高三角形,
    ∴,
    ∴.
    (3)解:∵和是等高三角形,
    ∴,
    ∴;
    ∵和是等高三角形,
    ∴,
    ∴.
    【点睛】本题主要考查了等高三角形的定义、性质以及应用性质解题,熟练掌握等高三角形的性质并能灵活运用是解题的关键.
    21.(1)
    (2)
    (3)的度数是或或
    【分析】(1)运用三角形的内角和定理及角平分线的定义,首先求出,进而求出即可解决问题;
    (2)根据三角形的外角性质分别表示出与,再根据角平分线的性质可求得,最后根据三角形内角和定理即可求解;
    (3)在中,由于,求出,,所以如果中,存在一个内角等于另一个内角的2倍,那么分四种情况进行讨论:①;②;③;④;分别列出方程,求解即可.
    【详解】(1)解:.

    ∵点P是和的平分线的交点,

    (2)∵外角,的角平分线交于点Q,





    (3)延长至F,

    为的外角的角平分线,
    是的外角的平分线,

    平分,



    即,
    又,
    ,即;



    如果中,存在一个内角等于另一个内角的2倍,那么分四种情况:
    ①,则,;
    ②,则,,;
    ③,则,解得;
    ④,则,解得.
    综上所述,的度数是或或.
    【点睛】本题是三角形综合题,考查了三角形内角和定理、外角的性质,角平分线定义等知识;灵活运用三角形的内角和定理、外角的性质进行分类讨论是解题的关键.
    22.(1)见解析
    (2),证明见解析
    【分析】(1)由旋转的性质得,,利用三角形外角的性质求出,可得,等量代换得到即可;
    (2)延长到H使,连接,,可得是的中位线,然后求出,设,,求出,证明,得到,再根据等腰三角形三线合一证明即可.
    【详解】(1)证明:由旋转的性质得:,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,即D是的中点;
    (2);
    证明:如图2,延长到H使,连接,,
    ∵,
    ∴是的中位线,
    ∴,,
    由旋转的性质得:,,
    ∴,
    ∵,
    ∴,是等腰三角形,
    ∴,,
    设,,则,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    在和中,,
    ∴,
    ∴,
    ∵,
    ∴,即.

    【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.
    23.(1)见解析;(2)见解析;(3)是直角三角形,证明见解析.
    【分析】(1)根据中位线定理即可求出,利用等腰三角形的性质即可证明;
    (2)根据中位线定理即可求出和,通过第(1)问的结果进行等量代换即可证明;
    (3)根据中位线定理推出和从而求出,证明是等边三角形,利用中点求出,从而求出度数,即可求证的形状.
    【详解】证明:(1)的中点,是的中点,
    .
    同理,.

    .
    .
    (2)的中点,是的中点,

    .
    同理,.
    由(1)可知,
    .
    (3)是直角三角形,证明如下:
    如图,取的中点,连接,,
    是的中点,
    ,.
    同理,,.

    .
    .


    .

    .
    又,
    是等边三角形,
    .
    又,
    .

    .
    是直角三角形.
    故答案为:是直角三角形.
    【点睛】本题考查了三角形的中位线定理,等腰三角形的性质,等边三角形的性质以及直角三角形的判定,解题的关键在于灵活运用中位线定理.
    24.(1)三角形中位线定理(或三角形的中位线平行于第三边,且等于第三边的一半);平行四边形的定义(或两组对边分别平行的四边形叫做平行四边形)
    (2)答案不唯一,见解析
    (3)平行四边形的周长等于对角线与长度的和,见解析
    【分析】(1)根据三角形中位线定理和平行四边形的定义解答即可;
    (2)作对角线互相垂直的四边形,再顺次连接这个四边形各边中点即可;
    (3)根据三角形中位线定理得瓦里尼翁平行四边形一组对边和等于四边形的一条对角线,即可得妯结论.
    【详解】(1)解:三角形中位线定理(或三角形的中位线平行于第三边,且等于第三边的一半)
    平行四边形的定义(或两组对边分别平行的四边形叫做平行四边形)
    (2)解:答案不唯一,只要是对角线互相垂直的四边形,它的瓦里尼翁平行四边形即为矩形均可.例如:如图即为所求

    (3)瓦里尼翁平行四边形的周长等于四边形的两条对角线与长度的和,
    证明如下:∵点分别是边的中点,
    ∴.
    ∴.
    同理.
    ∴四边形的周长.
    即瓦里尼翁平行四边形的周长等于对角线与长度的和.
    【点睛】本题考查平行四边形的判定,矩形的判定,三角形中位线.熟练掌握三角形中位线定理是解题的关键.

    相关试卷

    模块二 知识全整合专题4 图形的性质 第10讲 与圆有关的计算(含解析) -最新中考数学二轮专题复习训练:

    这是一份模块二 知识全整合专题4 图形的性质 第10讲 与圆有关的计算(含解析) -最新中考数学二轮专题复习训练,共41页。试卷主要包含了知识全整合等内容,欢迎下载使用。

    模块二 知识全整合专题4 图形的性质 第9讲 圆的有关性质及与圆有关的位置关系(含解析) -最新中考数学二轮专题复习训练:

    这是一份模块二 知识全整合专题4 图形的性质 第9讲 圆的有关性质及与圆有关的位置关系(含解析) -最新中考数学二轮专题复习训练,共39页。试卷主要包含了知识全整合等内容,欢迎下载使用。

    模块二 知识全整合专题4 图形的性质 第8讲 正方形 (含解析)-最新中考数学二轮专题复习训练:

    这是一份模块二 知识全整合专题4 图形的性质 第8讲 正方形 (含解析)-最新中考数学二轮专题复习训练,共43页。试卷主要包含了知识全整合等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        模块二 知识全整合专题4 图形的性质 第2讲 三角形的基本性质(含解析) -最新中考数学二轮专题复习训练
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map