所属成套资源:【备战2025】最新中考数学二轮复习 模块专题训练(含解析)
模块四 题型全通关专题3 解答型题型第5讲 探究题 -最新中考数学二轮专题复习训练(含解析)
展开这是一份模块四 题型全通关专题3 解答型题型第5讲 探究题 -最新中考数学二轮专题复习训练(含解析),共67页。
第5讲 探究题
义务教育数学课程标准强调,学生的学习是一个主动的过程,认真听讲、独立思考、动手实践、自主探索、合作交流等是学习数学的重要方式.能够在实际情境中发现和提出有意义的数学问题,进行数学探究,初步养成独立思考、探究质疑、合作交流等学习习惯,初步形成自我反思的意识.
考点讲解:规律探究就是探究数与式的规律和图形的规律.一般需要求解一部分,根据求解的这部分来发现变化中的不变、找出变化规律、得出结论.
【例1】
2023·浙江嘉兴·统考中考真题)
1.观察下面的等式:
(1)写出的结果.
(2)按上面的规律归纳出一个一般的结论(用含n的等式表示,n为正整数)
(3)请运用有关知识,推理说明这个结论是正确的.
【变1】
(2023·安徽·统考中考真题)
2.【观察思考】
【规律发现】
请用含的式子填空:
(1)第个图案中“”的个数为 ;
(2)第个图案中“★”的个数可表示为,第个图案中“★”的个数可表示为,第个图案中“★”的个数可表示为,第个图案中“★”的个数可表示为,……,第个图案中“★”的个数可表示为______________.
【规律应用】
(3)结合图案中“★”的排列方式及上述规律,求正整数,使得连续的正整数之和等于第个图案中“”的个数的倍.
考点讲解:类比探究就是依照A类的研究方法或结论去研究B类.可以借助解法,也可以借助结论的形式.
【例1】
(2022·湖北襄阳·统考中考真题)
3.矩形ABCD中,=(k>1),点E是边BC的中点,连接AE,过点E作AE的垂线EF,与矩形的外角平分线CF交于点F.
(1)【特例证明】如图(1),当k=2时,求证:AE=EF;
小明不完整的证明过程如下,请你帮他补充完整.
(2)【类比探究】如图(2),当k≠2时,求的值(用含k的式子表示);
(3)【拓展运用】如图(3),当k=3时,P为边CD上一点,连接AP,PF,∠PAE=45°,,求BC的长.
【变1】
(2023·四川巴中·统考中考真题)
4.综合与实践.
(1)提出问题.如图1,在和中,,且,,连接,连接交的延长线于点O.
①的度数是___________.
②__________.
(2)类比探究.如图2,在和中,,且,连接并延长交于点O.
①的度数是___________.
②___________.
(3)问题解决.如图3,在等边中,于点D,点E在线段上(不与A重合),以为边在的左侧构造等边,将绕着点A在平面内顺时针旋转任意角度.如图4,M为的中点,N为的中点.
①试说明为等腰三角形.
②求的度数.
考点讲解:拓展探究就是改变条件后探究结论是否改变,或由特例探究一般情况是否成立.
【例1】
(2023·山西·统考中考真题)
5.问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为和,其中.将和按图2所示方式摆放,其中点与点重合(标记为点).当时,延长交于点.试判断四边形的形状,并说明理由.
(1)数学思考:谈你解答老师提出的问题;
(2)深入探究:老师将图2中的绕点逆时针方向旋转,使点落在内部,并让同学们提出新的问题.
①“善思小组”提出问题:如图3,当时,过点作交的延长线于点与交于点.试猜想线段和的数量关系,并加以证明.请你解答此问题;
②“智慧小组”提出问题:如图4,当时,过点作于点,若,求的长.请你思考此问题,直接写出结果.
【变1】
(2023·江苏连云港·统考中考真题)
6.【问题情境 建构函数】
(1)如图1,在矩形中,是的中点,,垂足为.设,试用含的代数式表示.
【由数想形 新知初探】
(2)在上述表达式中,与成函数关系,其图像如图2所示.若取任意实数,此时的函数图像是否具有对称性?若有,请说明理由,并在图2上补全函数图像.
【数形结合 深度探究】
(3)在“取任意实数”的条件下,对上述函数继续探究,得出以下结论:①函数值随的增大而增大;②函数值的取值范围是;③存在一条直线与该函数图像有四个交点;④在图像上存在四点,使得四边形是平行四边形.其中正确的是__________.(写出所有正确结论的序号)
【抽象回归 拓展总结】
(4)若将(1)中的“”改成“”,此时关于的函数表达式是__________;一般地,当取任意实数时,类比一次函数、反比例函数、二次函数的研究过程,探究此类函数的相关性质(直接写出3条即可).
考点讲解:应用探究就是通过探究解决实际应用中的问题.一般针对实际情境,提出问题,通过探究解决问题.
【例1】
(2023·湖南永州·统考中考真题)
7.小明观察到一个水龙头因损坏而不断地向外滴水,为探究其漏水造成的浪费情况,小明用一个带有刻度的量筒放在水龙头下面装水,每隔一分钟记录量简中的总水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如下表的一组数据:
(1)探究:根据上表中的数据,请判断和(k,b为常数)哪一个能正确反映总水量y与时间t的函数关系?并求出y关于t的表达式;
(2)应用:
①请你估算小明在第20分钟测量时量筒的总水量是多少毫升?
②一个人一天大约饮用1500毫升水,请你估算这个水龙头一个月(按30天计)的漏水量可供一人饮用多少天.
【变1】
(2023·浙江金华·统考中考真题)
8.问题:如何设计“倍力桥”的结构?
探究:图是“桥”侧面示意图,为横梁与地面的交点,为圆心,是横梁侧面两边的交点.测得,点到的距离为.试判断四边形的形状,并求的值.
探究2:若搭成的“桥”刚好能绕成环,其侧面示意图的内部形成一个多边形.
①若有12根横梁绕成环,图4是其侧面示意图,内部形成十二边形,求的值;
②若有根横梁绕成的环(为偶数,且),试用关于的代数式表示内部形成的多边形的周长.
(2023·浙江·统考中考真题)
9.观察下面的等式:,,,,….
(1)尝试:___________.
(2)归纳:___________(用含n的代数式表示,n为正整数).
(3)推理:运用所学知识,推理说明你归纳的结论是正确的.
(2022·浙江嘉兴·统考中考真题)
10.设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.
(1)尝试:
①当a=1时,152=225=1×2×100+25;
②当a=2时,252=625=2×3×100+25;
③当a=3时,352=1225= ;
……
(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.
(3)运用:若与100a的差为2525,求a的值.
(2022·安徽·统考中考真题)
11.观察以下等式:
第1个等式:,
第2个等式:,
第3个等式:,
第4个等式:,
……
按照以上规律.解决下列问题:
(1)写出第5个等式:________;
(2)写出你猜想的第n个等式(用含n的式子表示),并证明.
(2023·湖南·统考中考真题)
12.问题情境:小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形的边上任意取一点G,以为边长向外作正方形,将正方形绕点B顺时针旋转.
特例感知:
(1)当在上时,连接相交于点P,小红发现点P恰为的中点,如图①.针对小红发现的结论,请给出证明;
(2)小红继续连接,并延长与相交,发现交点恰好也是中点P,如图②,根据小红发现的结论,请判断的形状,并说明理由;
规律探究:
(3)如图③,将正方形绕点B顺时针旋转,连接,点P是中点,连接,,,的形状是否发生改变?请说明理由.
(2023·山东淄博·统考中考真题)
13.在数学综合与实践活动课上,小红以“矩形的旋转”为主题开展探究活动.
(1)操作判断
小红将两个完全相同的矩形纸片和拼成“L”形图案,如图①.
试判断:的形状为________.
(2)深入探究
小红在保持矩形不动的条件下,将矩形绕点旋转,若,.
探究一:当点恰好落在的延长线上时,设与相交于点,如图②.求的面积.
探究二:连接,取的中点,连接,如图③.
求线段长度的最大值和最小值.
(2023·内蒙古呼和浩特·统考中考真题)
14.探究函数的图象和性质,探究过程如下:
(1)自变量的取值范围是全体实数,与的几组对应值列表如下
其中,________.根据上表数据,在图1所示的平面直角坐标系中,通过描点画出了函数图象的一部分,请画出该函数图象的另一部分.观察图象,写出该函数的一条性质;
(2)点是函数图象上的一动点,点,点,当时,请直接写出所有满足条件的点的坐标;
(3)在图2中,当在一切实数范围内时,抛物线交轴于,两点(点在点的左边),点是点关于抛物线顶点的对称点,不平行轴的直线分别交线段,(不含端点)于,两点.当直线与抛物线只有一个公共点时,与的和是否为定值?若是,求出此定值;若不是,请说明理由.
(2023·江苏·统考中考真题)
15.如图1,小丽借助几何软件进行数学探究:第一步,画出矩形和矩形,点、在边上(),且点、、、在直线的同侧;第二步,设置,矩形能在边上左右滑动;第三步,画出边的中点,射线与射线相交于点(点、不重合),射线与射线相交于点(点、不重合),观测、的长度.
(1)如图,小丽取,滑动矩形,当点、重合时,______;
(2)小丽滑动矩形,使得恰为边的中点.她发现对于任意的总成立.请说明理由;
(3)经过数次操作,小丽猜想,设定、的某种数量关系后,滑动矩形,总成立.小丽的猜想是否正确?请说明理由.
(2023·浙江·统考中考真题)
16.小贺在复习浙教版教材九上第81页第5题后,进行变式、探究与思考:如图1,的直径垂直弦AB于点E,且,.
(1)复习回顾:求的长.
(2)探究拓展:如图2,连接,点G是上一动点,连接,延长交的延长线于点F.
①当点G是的中点时,求证:;
②设,,请写出y关于x的函数关系式,并说明理由;
③如图3,连接,当为等腰三角形时,请计算的长.
(2023·宁夏·统考中考真题)
17.综合与实践
问题背景
数学小组发现国旗上五角星的五个角都是顶角为的等腰三角形,对此三角形产生了极大兴趣并展开探究.
探究发现
如图1,在中,,.
(1)操作发现:将折叠,使边落在边上,点的对应点是点,折痕交于点,连接,,则_______,设,,那么______(用含的式子表示);
(2)进一步探究发现:,这个比值被称为黄金比.在(1)的条件下试证明:;
拓展应用:
当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的是黄金三角形.如图2,在菱形中,,.求这个菱形较长对角线的长.
(2023·山东日照·统考中考真题)
18.在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论.解决以下问题:
如图1,中,().点D是边上的一动点(点D不与B,C重合),将线段绕点A顺时针旋转到线段,连接.
(1)求证:A,E,B,D四点共圆;
(2)如图2,当时,是四边形的外接圆,求证:是的切线;
(3)已知,点M是边的中点,此时是四边形的外接圆,直接写出圆心P与点M距离的最小值.
(2023·贵州·统考中考真题)
19.如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形中,,过点作射线,垂足为,点在上.
(1)【动手操作】
如图②,若点在线段上,画出射线,并将射线绕点逆时针旋转与交于点,根据题意在图中画出图形,图中的度数为_______度;
(2)【问题探究】
根据(1)所画图形,探究线段与的数量关系,并说明理由;
(3)【拓展延伸】
如图③,若点在射线上移动,将射线绕点逆时针旋转与交于点,探究线段之间的数量关系,并说明理由.
(2023·湖北鄂州·统考中考真题)
20.某数学兴趣小组运用《几何画板》软件探究型抛物线图象.发现:如图1所示,该类型图象上任意一点P到定点的距离,始终等于它到定直线l:的距离(该结论不需要证明).他们称:定点F为图象的焦点,定直线l为图象的准线,叫做抛物线的准线方程.准线l与y轴的交点为H.其中原点O为的中点,.例如,抛物线,其焦点坐标为,准线方程为l:,其中,.
【基础训练】
(1)请分别直接写出抛物线的焦点坐标和准线l的方程:___________,___________;
【技能训练】
(2)如图2,已知抛物线上一点到焦点F的距离是它到x轴距离的3倍,求点P的坐标;
【能力提升】
(3)如图3,已知抛物线的焦点为F,准线方程为l.直线m:交y轴于点C,抛物线上动点P到x轴的距离为,到直线m的距离为,请直接写出的最小值;
【拓展延伸】
该兴趣小组继续探究还发现:若将抛物线平移至.抛物线内有一定点,直线l过点且与x轴平行.当动点P在该抛物线上运动时,点P到直线l的距离始终等于点P到点F的距离(该结论不需要证明).例如:抛物线上的动点P到点的距离等于点P到直线l:的距离.
请阅读上面的材料,探究下题:
(4)如图4,点是第二象限内一定点,点P是抛物线上一动点,当取最小值时,请求出的面积.
(2023·内蒙古赤峰·统考中考真题)
21.数学兴趣小组探究了以下几何图形.如图①,把一个含有角的三角尺放在正方形中,使角的顶点始终与正方形的顶点重合,绕点旋转三角尺时,角的两边,始终与正方形的边,所在直线分别相交于点,,连接,可得.
【探究一】如图②,把绕点C逆时针旋转得到,同时得到点在直线上.求证:;
【探究二】在图②中,连接,分别交,于点,.求证:;
【探究三】把三角尺旋转到如图③所示位置,直线与三角尺角两边,分别交于点,.连接交于点,求的值.
(2023·河北·统考中考真题)
22.装有水的水槽放置在水平台面上,其横截面是以为直径的半圆,,如图1和图2所示,为水面截线,为台面截线,.
计算:在图1中,已知,作于点.
(1)求的长.
操作:将图1中的水面沿向右作无滑动的滚动,使水流出一部分,当时停止滚动,如图2.其中,半圆的中点为,与半圆的切点为,连接交于点.
探究:在图2中
(2)操作后水面高度下降了多少?
(3)连接OQ并延长交GH于点F,求线段与的长度,并比较大小.
(2023·湖北武汉·统考中考真题)
23.问题提出:如图(1),是菱形边上一点,是等腰三角形,,交于点,探究与的数量关系.
问题探究:
(1)先将问题特殊化,如图(2),当时,直接写出的大小;
(2)再探究一般情形,如图(1),求与的数量关系.
问题拓展:
(3)将图(1)特殊化,如图(3),当时,若,求的值.
证明:如图,在BA上截取BH=BE,连接EH.
∵k=2,
∴AB=BC.
∵∠B=90°,BH=BE,
∴∠1=∠2=45°,
∴∠AHE=180°-∠1=135°.
∵CF平分∠DCG,∠DCG=90°,
∴∠3=∠DCG=45°.
∴∠ECF=∠3+∠4=135°.
∴……
(只需在答题卡对应区域写出剩余证明过程)
时间t(单位:分钟)
1
2
3
4
5
…
总水量y(单位:毫升)
7
12
17
22
27
…
图1是搭成的“倍力桥”,纵梁夹住横梁,使得横梁不能移动,结构稳固.
图是长为,宽为的横梁侧面示意图,三个凹槽都是半径为的半圆.圆心分别为,纵梁是底面半径为的圆柱体.用相同规格的横梁、纵梁搭“桥”,间隙忽略不计.
参考答案:
1.(1)
(2)
(3)见解析
【分析】(1)根据题干的规律求解即可;
(2)根据题干的规律求解即可;
(3)将因式分解,展开化简求解即可.
【详解】(1);
(2);
(3)
.
【点睛】此题考查数字的变化规律,因式分解,整式乘法的混合运算,解题关键是通过观察,分析、归纳发现其中的变化规律.
2.(1)
(2)
(3)
【分析】(1)根据前几个图案的规律,即可求解;
(2)根据题意,结合图形规律,即可求解.
(3)根据题意,列出一元二次方程,解方程即可求解.
【详解】(1)解:第1个图案中有个,
第2个图案中有个,
第3个图案中有个,
第4个图案中有个,
……
∴第个图案中有个,
故答案为:.
(2)第1个图案中“★”的个数可表示为,
第2个图案中“★”的个数可表示为,
第3个图案中“★”的个数可表示为,
第4个图案中“★”的个数可表示为,……,
第n个图案中“★”的个数可表示为,
(3)解:依题意,,
第个图案中有个,
∴,
解得:(舍去)或.
【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.
3.(1)见解析
(2)
(3)
【分析】(1)证明△AHE≌△ECF(ASA)即可;
(2)在BA上截取BH=BE,连接EH.证明△AHE∽△ECF,即可求解;
(3)以A为旋转中心,△ADP绕A点旋转90°到△AP'H,设AB=3a,则BC=2a,连接P'E,HE,延长P'H交CD于点G,连接EG,证明△AEP'≌△AEP(SAS),△PEG≌△P'EH(AAS),可得四边形APEP'是正方形,再证明△APD≌△PEC(AAS),由(2)得△AHE∽△ECF,过点P作PK⊥AE交于K,进而证明四边形PKEF是矩形,则有PF==a,即可求出BC=.
【详解】(1)证明:如图,在BA上截取BH=BE,连接EH.
∵k=2,
∴AB=BC.
∵∠B=90°,BH=BE,
∴∠1=∠2=45°,
∴∠AHE=180°-∠1=135°,
∵CF平分∠DCG,∠DCG=90°,
∴∠3=∠DCG=45°,
∴∠ECF=∠3+∠4=135°,
∵AE⊥EF,
∴∠6+∠AEB=90°,
∵∠5+∠AEB=90°,
∴∠5=∠6,
∵AB=BC,BH=BE,
∴AH=EC,
∴△AHE≌△ECF(ASA),
∴AE=EF;
(2)解:在BA上截取BH=BE,连接EH.
∵∠B=90°,BH=BE,
∴∠BHE=∠BEH=45°,
∴∠AHE=135°,
∵CF平分∠DCG,∠DCG=90°,
∴∠DCF=∠DCG=45°.
∴∠ECF=135°,
∵AE⊥EF,
∴∠FEC+∠AEB=90°,
∵∠BAE+∠AEB=90°,
∴∠BAE=∠FEC,
∴△AHE∽△ECF,
∴,
∵,E是BC边的中点,
∴EC=HB=BC,
∴AH=AB-BC=BC,
∴;
(3)解:以A为旋转中心,△ADP绕A点旋转90°到△AP'H,
∵k=3,
∴,
设AB=3a,则BC=2a,
∵∠PAE=45°,
∴∠P'AP=90°,
连接P'E,HE,延长P'H交CD于点M,连接EM,
∵AH=AD=2a,
∴BH=a,
∵E是BC的中点,
∴BE=a,
∴HE=a,∠BHE=45°,
∴∠P'HE=135°,
∵CG=EC=a,
∴∠MEC=45°,
∴∠PME=135°,
∵AP'=AP,∠PAE=∠P'AE,AE=AE,
∴△AEP'≌△AEP(SAS),
∴PE=P'E,
∴△PEM≌△P'EH(AAS),
∴∠PEG=∠P'EH,
∵∠HEG=∠EGH=45°,
∴∠HEG=90°,
∴∠PEP'=90°,
∴∠AEP=∠AEP'=45°,
∴∠APE=∠AP'E=90°,
∴四边形APEP'是正方形,
∴AP=PE,
∵∠DAP+∠APD=90°,∠APD+∠EPC=90°,
∴∠DAP=∠EPC,
∵AP=PE,
∴△APD≌△PEC(AAS),
∴AD=PC=2a,PD=ED=a,
∴PE=a,
由(2)得△AHE∽△ECF,
∴,
∵
∴,
∵∠HEM=∠AEF=90°,
∴∠HEA=∠MEF,
∵∠PEM=∠P'EH,
∴∠PEF=∠P'EH=45°,
过点P作PK⊥AE交于K,
∵EF⊥AE,
∴PKEF,
∵,
∴PK=EF,
∴四边形PKEF是矩形,
∴PF=KE,
∵,
∴,
∴
∴.
【点睛】本题考查四边形的综合应用,熟练掌握矩形的性质,全等三角形的判定及性质,相似三角形是判定及性质,正方形的判定及性质,等腰直角三角形的判定及性质是解题的关键.
4.(1)①.②
(2)①.②
(3)①见解析;②
【分析】(1)①证明得到,进而证明,即可求出;②由全等三角形的性质可得,则;
(2)①根据等腰直角三角形的性质得到,,进而证明,得到,推出,则;②由相似三角形的性质可得;
(3)①连接,延长交于点P,交于点O,证明分别是、的中位线,得到,再证明,得到,则,由此即可证明为等腰三角形;②由全等三角形的性质可得,进而求出,则,再由平行线的性质可得.
【详解】(1)解:①,
∴,即,
又∵,
∴,
∴,
∵即,
∴,即
∴,
故答案为:;
②∵,
∴,
∴,
故答案为:;
(2)解:①∵在和中,,且,
∴,,
∴,即,
又∵,
∴,
∴,
∵,
∴,
∴,
故答案为:;
②∵,
∴,
故答案为:;
(3)解:①连接,延长交于点P,交于点O
在等边中,于点D,
为的中点
又为的中点,N为的中点,
分别是、的中位线
∵都是等边三角形,
∴
,
在和中
,
为等腰三角形.
②
,
∵,
∴,
∴,
∴,
∴
又,即
.
【点睛】本题主要考查了等边三角形的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定,相似三角形的性质与判定,三角形中位线定理,三角形内角和定理等等,正确理解题意通过作辅助线构造全等三角形是解题的关键.
5.(1)正方形,见解析
(2)①,见解析;②
【分析】(1)先证明四边形是矩形,再由可得,从而得四边形是正方形;
(2)①由已知可得,再由等积方法,再结合已知即可证明结论;②设的交点为M,过M作于G,则易得,点G是的中点;利用三角函数知识可求得的长,进而求得的长,利用相似三角形的性质即可求得结果.
【详解】(1)解:四边形为正方形.理由如下:
∵,
∴.
∵,
∴.
∴.
∵,
∴四边形为矩形.
∵,
∴.
∴矩形为正方形.
(2):①.
证明:∵,
∴.
∵,
∴.
∵,即,
∴.
∵,
∴.
由(1)得,
∴.
②解:如图:设的交点为M,过M作于G,
∵,
∴,,
∴;
∵,
∴,
∴,
∵,
∴点G是的中点;
由勾股定理得,
∴;
∵,
∴,即;
∴;
∵,,
∴,
∴,
∴,即的长为.
【点睛】本题考查了旋转的性质、全等三角形的判定与性质、正方形的判定与性质、相似三角形的判定与性质、三角函数、勾股定理等知识点,适当添加的辅助线、构造相似三角形是解题的关键.
6.(1);(2)取任意实数时,对应的函数图像关于原点成中心对称,见解析;(3)①④;(4),见解析
【分析】(1)证明,得出,进而勾股定理求得,即,整理后即可得出函数关系式;
(2)若为图像上任意一点,则.设关于原点的对称点为,则.当时,可求得.则也在的图像上,即可得证,根据中心对称的性质补全函数图象即可求解;
(3)根据函数图象,以及中心对称的性质,逐项分析判断即可求解;
(4)将(1)中的4换成,即可求解;根据(2)的图象探究此类函数的相关性质,即可求解.
【详解】(1)在矩形中,,
∴.
∵,
∴,
∴.
∴.
∴,∴.
∵,点是的中点,∴.
在中,,
∴.∴.
∴关于的表达式为:.
(2)取任意实数时,对应的函数图像关于原点成中心对称.
理由如下:
若为图像上任意一点,则.
设关于原点的对称点为,则.
当时,
.
∴也在的图像上.
∴当取任意实数时,的图像关于原点对称.
函数图像如图所示.
(3)根据函数图象可得①函数值随的增大而增大,故①正确,
②由(1)可得函数值,故函数值的范围为,故②错误;
③根据中心对称的性质,不存在一条直线与该函数图像有四个交点,故③错误;
④因为平行四边形是中心对称图形,则在图像上存在四点,使得四边形是平行四边形,故④正确;
故答案为:①④.
(4)关于的函数表达式为;
当取任意实数时,有如下相关性质:
当时,图像经过第一、三象限,函数值随的增大而增大,的取值范围为;
当时,图像经过第二、四象限,函数值随的增大而减小,的取值范围为;
函数图像经过原点;
函数图像关于原点对称;
【点睛】本题考查了相似三角形的性质,中心对称的性质,根据函数图象获取信息,根据题意求得解析式是解题的关键.
7.(1)能正确反映总水量y与时间t的函数关系;
(2)①102毫升;②144天
【分析】(1)观察表格,可发现前一分钟比后一分钟少5毫升的水,故可得能正确反映总水量y与时间t的函数关系,再选取两组数据代入函数解析式,根据待定系数法,即可得到y关于t的表达式;
(2)①将代入函数,即可解答;
②由解析式可知,每分钟滴水量为毫升,故可算出1个月的总滴水量,再除以一个人每天的饮水量,即可解答.
【详解】(1)解:观察表格,可发现前一分钟比后一分钟少5毫升的水,故可得能正确反映总水量y与时间t的函数关系,
把,代入,
可得,
解得,
y关于t的表达式;
(2)①当时,,
故小明在第20分钟测量时量筒的总水量是102毫升,
答:小明在第20分钟测量时量筒的总水量是102毫升.
②由解析式可知,每分钟的滴水量为毫升,
30天分钟分钟,
可供一人饮水天数天,
答:这个水龙头一个月(按30天计)的漏水量可供一人饮用144天.
【点睛】本题考查了待定系数法求一次函数,一次函数的应用,正确读懂题意,求得正确的一次函数解析式是解题的关键.
8.探究1:四边形是菱形,;探究2:①;②
【分析】探究1:根据图形即可判断出形状;根据等腰三角形性质可求出长度,利用勾股定理即可求出长度,从而求出值.
探究2:①根据十二边形的特性可知,利用特殊角正切值求出长度,最后利用菱形的性质求出的长度,从而求得值.②根据正多边形的特性可知的度数,利用特殊角正切值求出和长度,最后利用菱形的性质求出的长度,从而求得值.
【详解】解:探究1:四边形是菱形,理由如下:
由图1可知,,,
为平行四边形.
桥梁的规格是相同的,
∴桥梁的宽度相同,即四边形每条边上的高相等,
∵的面积等于边长乘这条边上的高,
每条边相等,
为菱形.
②如图1,过点作于点.
由题意,得,.
∴.
在中,,
∴.
∴.
故答案为:.
探究2:①如图2,过点作于点.
由题意,得,
.
.
又四边形是菱形,
∴.
∴.
故答案为:.
②如图3,过点作于点.
由题意,形成的多边形为正边形,
外角.
在中,.
又,
∴.
形成的多边形的周长为.
故答案为:.
【点睛】本题是一道生活实际应用题,考查的是菱形的性质和判定、锐角三角函数、勾股定理,解题的关键在于将生活实际和有关数学知识有效结合以及熟练掌握相关性质.
9.(1)6
(2)n
(3)见解析
【分析】(1)根据题目中的例子,可以直接得到结果;
(2)根据题目中给出的式子,可以直接得到答案;
(3)将(2)中等号左边用平方差公式计算即可.
【详解】(1)解:∵,,,,
∴,,
故答案为:6;
(2)由题意得:,
故答案为:n;
(3)
.
【点睛】此题考查了数字类的变化规律,有理数的混合运算,列代数式,平方差公式,正确理解题意,发现式子的变化特点是解题的关键.
10.(1)③;
(2)相等,证明见解析;
(3)
【分析】(1)③仔细观察①②的提示,再用含有相同规律的代数式表示即可;
(2)由再计算100a(a+1)+25,从而可得答案;
(3)由与100a的差为2525,列方程,整理可得再利用平方根的含义解方程即可.
【详解】(1)解:①当a=1时,152=225=1×2×100+25;
②当a=2时,252=625=2×3×100+25;
③当a=3时,352=1225=;
(2)解:相等,理由如下:
100a(a+1)+25=
(3) 与100a的差为2525,
整理得: 即
解得:
1≤a≤9,
【点睛】本题考查的是数字的规律探究,完全平方公式的应用,单项式乘以多项式,利用平方根的含义解方程,理解题意,列出运算式或方程是解本题的关键.
11.(1)
(2),证明见解析
【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;
(2)观察相同位置的数变化规律可以得出第n个等式为,利用完全平方公式和平方差公式对等式左右两边变形即可证明.
【详解】(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:,
故答案为:;
(2)解:第n个等式为,
证明如下:
等式左边:,
等式右边:
,
故等式成立.
【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.
12.(1)见解析;(2)是等腰直角三角形,理由见解析;(3)的形状不改变,见解析
【分析】(1)连接,,,根据正方形的性质求出,证明,推出,再利用余角的性质求出,推出即可;
(2)根据正方形的性质直接得到,推出,得到是等腰直角三角形;
(3)延长至点M,使,连接,证明,得到,推出,设交于点H,交于点N,得到,由得到,推出,进而得到,再证明,得到,,证得,再由,根据等腰三角形的三线合一的性质求出,即可证得是等腰直角三角形.
【详解】(1)证明:连接,,,如图,
∵四边形,都是正方形,
∴,
∴,
∵四边形是正方形,
∴,
又∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴,即点P恰为的中点;
(2)是等腰直角三角形,理由如下:
∵四边形,都是正方形,
∴
∴,
∴是等腰直角三角形;
(3)的形状不改变,
延长至点M,使,连接,
∵四边形、四边形都是正方形,
∴,,
∵点P为的中点,
∴,
∵,
∴,
∴,
∴,,
∴,
设交于点H,交于点N,
∴,
∵,
∴,
∵,
∴,
∵,
∴,
又∵,
∴,
∴,,
∵,
∴,即,
∵,
∴,即,
∴,
∴,
∴,
∴是等腰直角三角形.
【点睛】此题考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,平行线的性质等,(3)中作辅助线利用中点构造全等三角形是解题的难点,熟练掌握各性质和判定定理是解题的关键.
13.(1)等腰直角三角形
(2)探究一:;探究二:线段长度的最大值为,最小值为
【分析】(1)由,可知是等腰三角形,再由,推导出,即可判断出是等腰直角三角形,
(2)探究一:证明,可得,再由等腰三角形的性质可得,在中,勾股定理列出方程,解得,即可求的面积;
探究二:连接,取的中点,连接,取、的中点为、,连接,,,分别得出四边形是平行四边形,四边形是平行四边形,则,可知点在以为直径的圆上,设的中点为,,即可得出的最大值与最小值.
【详解】(1)解:两个完全相同的矩形纸片和,
,
是等腰三角形,
,.,
,
,
∵,
∴,
∴,
,
,
,
是等腰直角三角形,
故答案为:等腰直角三角形;
(2)探究一:,,,
,
,
,,
,
,,
,
在中,,
,
解得,
,
的面积;
探究二:连接,取的中点,连接,,取、的中点为、,连接,,,
是的中点,
,且,
,
,,
,且,
四边形是平行四边形,
,,
,,
,,
四边形是平行四边形,
,
,
点在以为直径的圆上,
设的中点为,
,
的最大值为,最小值为.
【点睛】本题考查四边形的综合应用,熟练掌握矩形的性质,直角三角形的性质,三角形全等的判定及性质,平行四边形的性质,圆的性质,能够确定H点的运动轨迹是解题的关键.
14.(1)2,图见解析,图象关于轴对称
(2)或或
(3)是定值,
【分析】(1)把代入解析式,求出的值即可,描点,连线画出函数图形,根据图形写出一条性质即可;
(2)利用,进行求解即可.
(3)根据题意,求出抛物线的顶点坐标,点的坐标,进而求出直线的解析式,设直线的解析式为,联立抛物线的解析式,根据两个图象只有一个交点,得到,得到,分别联立直线和直线的解析式,求出的坐标,利用锐角三角形函数求出的长,再进行求解即可得出结论.
【详解】(1)解:当时,,
∴,
根据题干中的表格数据,描点,连线,得到函数图象,如下:
由图象可知:图象关于轴对称;
故答案为:.
(2)解:∵点,点,
∴,
∴,
∴,
∴,
当时:,
解得:,
∴或,
当时:,
解得:,
∴;
综上:或或;
(3)是定值;
∵,当时,,解得:,
∴对称轴为直线,顶点坐标为,,
∵点是点关于抛物线顶点的对称点,
∴,
设直线的解析式为,把代入,得:,
∴,
设直线的解析式为,
则:,解得:,
∴,
设直线:,
联立和,得:,
∵直线与抛物线只有一个交点,
∴,
∴,
联立,,得:,
联立,,得:,
如图:∵关于对称,
∴,
∵,,
∴,
∴,
∴,
过点作,过点作,
则:,
∴,
∴
;
∴与的和为定值:.
【点睛】本题考查二次函数的综合应用,解直角三角形.解题的关键是掌握描点法画函数图象,利用数形结合的思想进行求解.本题的综合性强,难度较大,属于中考压轴题.
15.(1);
(2)见解析;
(3)小丽的猜想正确,理由见解析.
【分析】(1)证,利用相似三角形的性质即矩形的性质即可得解;
(2)证得,同理可得,由,,得,进而有,再根据矩形的性质即可得证;
(3)当时,取的中点,连接、,由,恰为边的中点,得,进而证,得,于是有,由平行线分线段成比例得,同理可证:,于是有,从而即可得解.
【详解】(1)解:∵四边形和四边形都是矩形,
∴,,,
∵,,
∴,,
∴是的中点,
∴,
∴,
∵,,
∴,
∴即,
∴,
∴,
故答案为:;
(2)证明:如下图,
解:∵小丽滑动矩形,使得恰为边的中点,
∴,,
∵四边形和四边形都是矩形,
∴,,,
∵,
∴,
∴,
同理可得,
∵,,
∴,
∴,
∵,
∴,
∵,
∴;
(3)解:小丽的猜想正确,当时,总成立,理由如下:
如下图,取的中点,连接、,
∵四边形和四边形都是矩形,
∴,,,
∵,,
∴,
∵恰为边的中点,是的中点,
∴,,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
同理可证:,
∵,
∴,
∴,
∴小丽的猜想正确.
【点睛】本题考查了矩形的性质,相似三角形的判定及性质,比例的性质,平行线的判定及性质以及中点的定义,熟练掌握相似三角形的判定及性质是解题的关键.
16.(1);
(2)①见解析;②;③的长为或.
【分析】(1)先求得的直径为10,再利用垂径定理求得,在中,利用勾股定理即可求解;
(2)①连接,由点G是的中点,推出,根据等角的余角相等即可证明结论成立;
②利用勾股定理求得,利用垂径定理得到,推出,证明,利用相似三角形的性质即可求解;
③分两种情况讨论,当和时,证明,利用相似三角形的性质求解即可.
【详解】(1)解:连接,
∵的直径垂直弦AB于点E,且,,
∴,,
∴,,
在中,,
∴;
(2)解:①连接,
∵点G是的中点,
∴,
∴,
∵的直径垂直弦AB于点E,
∴,
∴,
∴;
②∵,,,
∴,
∵的直径垂直弦AB于点E,
∴,
∴,
∵,
∴,
∴,即,
∴;
③当时,
在中,,
∴,
∵,
∴,
∴,即,
∴;
当时,
在中,,
在中,,
∴,
同理,
∴,即,
∴;
综上,的长为或.
【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.
17.(1)(2)证明见解析,拓展应用:
【分析】(1)利用等边对等角求出的长,翻折得到,,利用三角形内角和定理求出,,,表示出即可;
(2)证明,利用相似比进行求解即可得出;
拓展应用:连接,延长至点,使,连接,得到为黄金三角形,进而得到,求出的长即可.
【详解】解:(1)∵,,
∴,
∵将折叠,使边落在边上,
∴,,
∴,;
故答案为:;
(2)证明:∵,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴,
整理,得:,
解得:(负值已舍掉);
经检验是原分式方程的解.
∴;
拓展应用:
如图,连接,延长至点,使,连接,
∵在菱形中,,,
∴,
∴,
∴,
∴,
∴为黄金三角形,
∴,
∴.即菱形的较长的对角线的长为.
【点睛】本题考查等腰三角形的判定和性质,菱形的性质,相似三角形的判定和性质.解题的关键是理解并掌握黄金三角形的定义,利用相似三角形的判定和性质,得到黄金三角形的底边与腰长的比为.
18.(1)证明见解析
(2)证明见解析
(3)
【分析】(1)根据旋转的性质得到,证明,进而证明,可以得到,由,可得,即可证明A、B、D、E四点共圆;
(2)如图所示,连接,根据等边对等角得到,由圆周角定理得到,再由,得到,利用三角形内角和定理证明,即,由此即可证明是的切线;
(3)如图所示,作线段的垂直平分线,分别交于G、F,连接,先求出,再由三线合一定理得到,,解直角三角形求出,则,再解得到,则;由是四边形的外接圆,可得点P一定在的垂直平分线上,故当时,有最小值,据此求解即可.
【详解】(1)证明:由旋转的性质可得,
∴,
∴,即,
又∵,
∴,
∴,
∵,
∴,
∴A、B、D、E四点共圆;
(2)证明:如图所示,连接,
∵,
∴,
∵是四边形的外接圆,
∴,
∴,
∵,
∴,
∵,
∴,
∴,即,
∴,
又∵是的半径,
∴是的切线;
(3)解:如图所示,作线段的垂直平分线,分别交于G、F,连接,
∵,
∴,
∵点M是边的中点,
∴,,
∴,
∴,
在中,,
∴,
∵是四边形的外接圆,
∴点P一定在的垂直平分线上,
∴点P在直线上,
∴当时,有最小值,
∵,
∴在中,,
∴圆心P与点M距离的最小值为.
【点睛】本题主要考查了旋转的性质,等边对等角,解直角三角形,圆周角定理,切线的判定,三角形外接圆的性质,垂线段最短等等,正确作出辅助线是解题的关键.
19.(1)作图见解析;135
(2);理由见解析
(3)或;理由见解析
【分析】(1)根据题意画图即可;先求出,根据,求出;
(2)根据,,证明、P、B、E四点共圆,得出,求出,根据等腰三角形的判定即可得出结论;
(3)分两种情况,当点P在线段上时,当点P在线段延长线上时,分别画出图形,求出之间的数量关系即可.
【详解】(1)解:如图所示:
∵,
∴,
∵,
∴,
∴;
故答案为:135.
(2)解:;理由如下:
连接,如图所示:
根据旋转可知,,
∵,
∴、P、B、E四点共圆,
∴,
∴,
∴,
∴.
(3)解:当点P在线段上时,连接,延长,作于点F,如图所示:
根据解析(2)可知,,
∵,
∴,
∴,
∵,
∴,
∴,
∵,,
∴为等腰直角三角形,
∴,
∵为等腰直角三角形,
∴,
即;
当点P在线段延长线上时,连接,作于点F,如图所示:
根据旋转可知,,
∵,
∴、B、P、E四点共圆,
∴,
∴,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
∵,,
∴为等腰直角三角形,
∴,
即;
综上分析可知,或.
【点睛】本题主要考查了等腰三角形的判定和性质,三角形全等的判定和性质,圆周角定理,四点共圆,等腰直角三角形的性质,解题的关键是作出图形和相关的辅助线,数形结合,并注意分类讨论.
20.(1),;
(2);
(3)
(4)
【分析】(1)根据题中所给抛物线的焦点坐标和准线方程的定义求解即可;
(2)利用两点间距离公式结合已知条件列式整理得,然后根据,求出,进而可得,问题得解;
(3)过点作直线交于点,过点作准线交于点,结合题意和(1)中结论可知,,根据两点之间线段最短可得当,,三点共线时,的值最小;待定系数法求直线的解析式,求得点的坐标为,根据点是直线和直线m的交点,求得点的坐标为,即可求得和的值,即可求得;
(4)根据题意求得抛物线的焦点坐标为,准线l的方程为,过点作准线交于点,结合题意和(1)中结论可知,则,根据两点之间线段最短可得当,,三点共线时,的值最小;求得,即可求得的面积.
【详解】(1)解:∵抛物线中,
∴,,
∴抛物线的焦点坐标为,准线l的方程为,
故答案为:,;
(2)解:由(1)知抛物线的焦点F的坐标为,
∵点到焦点F的距离是它到x轴距离的3倍,
∴,整理得:,
又∵,
∴
解得:或(舍去),
∴,
∴点P的坐标为;
(3)解:过点作直线交于点,过点作准线交于点,结合题意和(1)中结论可知,,如图:
若使得取最小值,即的值最小,故当,,三点共线时,,即此刻的值最小;
∵直线与直线垂直,故设直线的解析式为,
将代入解得:,
∴直线的解析式为,
∵点是直线和抛物线的交点,
令,解得:,(舍去),
故点的坐标为,
∴,
∵点是直线和直线m的交点,
令,解得:,
故点的坐标为,
∴,
.
即的最小值为.
(4)解:∵抛物线中,
∴,,
∴抛物线的焦点坐标为,准线l的方程为,
过点作准线交于点,结合题意和(1)中结论可知,则,如图:
若使得取最小值,即的值最小,故当,,三点共线时,,即此刻的值最小;如图:
∵点的坐标为,准线,
∴点的横坐标为,代入解得,
即,,
则的面积为.
【点睛】本题考查了两点间距离公式结合,两点之间线段最短,三角形的面积,一次函数的交点坐标,一次函数与抛物线的交点坐标等,解决问题的关键是充分利用新知识的结论.
21.[探究一]见解析;[探究二]见解析;[探究三]
【分析】[探究一]证明,即可得证;
[探究二]根据正方形的性质证明,根据三角形内角和得出,加上公共角,进而即可证明
[探究三]先证明,得出,,将绕点顺时针旋转得到,则点在直线上.得出,根据全等三角形的性质得出,进而可得,证明,根据相似三角形的性质得出,即可得出结论.
【详解】[探究一]
∵把绕点C逆时针旋转得到,同时得到点在直线上,
∴,
∴,
∴,
在与中
∴
∴
[探究二]证明:如图所示,
∵四边形是正方形,
∴,
又,
∴,
∵,
∴,
又∵,
∴,
又∵公共角,
∴;
[探究三] 证明:∵是正方形的对角线,
∴,,
∴,
∵,
∴,
即,
∴,
∴,,
如图所示,将绕点顺时针旋转得到,则点在直线上.
∴,,
∴,
又,
∴,
∴,
∵,
∴,
又,
∴,
∴,
即.
【点睛】本题考查了全等三角形的性质与判定,旋转的性质,正方形的性质,相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.
22.(1);(2);(3),,.
【分析】(1)连接,利用垂径定理计算即可;
(2)由切线的性质证明进而得到,利用锐角三角函数求,再与(1)中相减即可;
(3)由半圆的中点为得到,得到分别求出线段与的长度,再相减比较即可.
【详解】解:(1)连接,
∵为圆心,于点,,
∴,
∵,
∴,
∴在中,
.
(2)∵与半圆的切点为,
∴
∵
∴于点,
∵,,
∴,
∴操作后水面高度下降高度为:
.
(3)∵于点,
∴,
∵半圆的中点为,
∴,
∴,
∴,
∴,
,
∵,
∴.
【点睛】本题考查了垂径定理、圆的切线的性质、求弧长和解直角三角形的知识,解答过程中根据相关性质构造直角三角形是解题关键.
23.(1)
(2)
(3)
【分析】(1)延长过点F作,证明即可得出结论.
(2)在上截取,使,连接,证明,通过边和角的关系即可证明.
(3)过点A作的垂线交的延长线于点,设菱形的边长为,由(2)知,,通过相似求出,即可解出.
【详解】(1)延长过点F作,
∵,
,
∴,
在和中
∴,
∴,
,
∴,
∴,
∴.
故答案为:.
(2)解:在上截取,使,连接.
,
,
.
,
.
.
,
.
.
(3)解:过点作的垂线交的延长线于点,设菱形的边长为,
.
在中,
,
.
,由(2)知,.
.
,
,
,
在上截取,使,连接,作于点O.
由(2)知,,
∴,
∵,
∴,.
∵,
∴,
∵,
∴.
.
【点睛】此题考查菱形性质、三角形全等、三角形相似,解题的关键是熟悉菱形性质、三角形全等、三角形相似.
相关试卷
这是一份模块四 题型全通关专题3 解答型题型第8讲 综合实践题 -最新中考数学二轮专题复习训练(含解析),共43页。
这是一份模块四 题型全通关专题3 解答型题型第7讲 应用题 -最新中考数学二轮专题复习训练(含解析),共34页。
这是一份模块四 题型全通关专题3 解答型题型第6讲 阅读题 -最新中考数学二轮专题复习训练(含解析),共35页。试卷主要包含了,分式的性质;等内容,欢迎下载使用。