所属成套资源:【备战2025】最新中考数学二轮复习 模块专题训练(含解析)
模块四 题型全通关专题3 解答型题型第8讲 综合实践题 -最新中考数学二轮专题复习训练(含解析)
展开
这是一份模块四 题型全通关专题3 解答型题型第8讲 综合实践题 -最新中考数学二轮专题复习训练(含解析),共43页。
第8讲 综合与实践题
初中阶段综合与实践领域,可采用项目式学习的方式,以问题解决为导向,,整合数学与其他学科的知识和思想方法,让学生从数学的角度观察与分析、思考与表达、解决与阐释社会生活以及科学技术中遇到的现实问题,感受数学与科学、技术、经济、金融、地理、艺术等学科领域的融合,积累数学活动经验,体会数学的科学价值,提高发现与提出问题、分析与解决问题的能力,发展应用意识、创新意识和实践能力.
考点讲解:跨章节的综合与实践,就是利用同板块的内容解决问题,但这些内容来自初中的不同年级的不同章节.
【例1】
(2023·宁夏·统考中考真题)
1.综合与实践
问题背景
数学小组发现国旗上五角星的五个角都是顶角为的等腰三角形,对此三角形产生了极大兴趣并展开探究.
探究发现
如图1,在中,,.
(1)操作发现:将折叠,使边落在边上,点的对应点是点,折痕交于点,连接,,则_______,设,,那么______(用含的式子表示);
(2)进一步探究发现:,这个比值被称为黄金比.在(1)的条件下试证明:;
拓展应用:
当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的是黄金三角形.如图2,在菱形中,,.求这个菱形较长对角线的长.
【变1】
(2023·江苏盐城·统考中考真题)
2.综合与实践
【问题情境】
如图1,小华将矩形纸片先沿对角线折叠,展开后再折叠,使点落在对角线上,点的对应点记为,折痕与边,分别交于点,.
【活动猜想】
(1)如图2,当点与点重合时,四边形是哪种特殊的四边形?答:_________.
【问题解决】
(2)如图3,当,,时,求证:点,,在同一条直线上.
【深入探究】
(3)如图4,当与满足什么关系时,始终有与对角线平行?请说明理由.
(4)在(3)的情形下,设与,分别交于点,,试探究三条线段,,之间满足的等量关系,并说明理由.
考点讲解:跨板块的综合与实践,就是利用不同数学模块的内容综合解决问题,但这些板块都来自于初中所学的知识,是这些知识的综合应用.
【例1】
(2023·广西南宁·统考二模)
3.综合与实践:
【问题情境】随着“乙类乙管”等疫情防控政策的优化实施,各地旅游景区全面复苏,迎来大批游客.某市积极推出了一系列具有地方民俗特色的文化旅游消费活动,拉动旅游消费再创新高.某校一个数学兴趣小组准备进行一个疫情后本市旅游业发展现状与前景预测的调研.
【收集数据】该兴趣小组成员从网上搜查资料,了解到有相关部门在第一季度对每周来本市旅游的人数进行了统计,数据如下表:
【整理数据】如图(1),根据统计表中的数据,他们建立以周次为横坐标,来访旅客量为纵坐标的平面直角坐标系,并将表格中的数据描绘在平面直角坐标系中.他们发现这些数据大致分布在直线某部分的附近,这条直线可近似地反映来该市旅游的人数变化趋势.
另外该兴趣小组在本市各个景区随机对来访旅客游玩天数的调查中,得到如图(2)所示的统计图.
【问题解决】请你基于上述数据整理的信息解答下列问题:
(1)这8周每周来访旅客的平均人数有______万人;
(2)求平均每周到访该市只游玩一天的游客人数;
(3)请你通过计算估计第9周来访的旅客量约是多少万人?(精确到0.1)
【变1】
(2023·山东济南·统考中考真题)
4.综合与实践
如图1,某兴趣小组计划开垦一个面积为的矩形地块种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为.
【问题提出】
小组同学提出这样一个问题:若,能否围出矩形地块?
【问题探究】
小颖尝试从“函数图象”的角度解决这个问题:
设为,为.由矩形地块面积为,得到,满足条件的可看成是反比例函数的图象在第一象限内点的坐标;木栏总长为,得到,满足条件的可看成一次函数的图象在第一象限内点的坐标,同时满足这两个条件的就可以看成两个函数图象交点的坐标.
如图2,反比例函数的图象与直线:的交点坐标为和_________,因此,木栏总长为时,能围出矩形地块,分别为:,;或___________m,__________m.
(1)根据小颖的分析思路,完成上面的填空.
【类比探究】
(2)若,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由.
【问题延伸】
当木栏总长为时,小颖建立了一次函数.发现直线可以看成是直线通过平移得到的,在平移过程中,当过点时,直线与反比例函数的图象有唯一交点.
(3)请在图2中画出直线过点时的图象,并求出的值.
【拓展应用】
小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“与图象在第一象限内交点的存在问题”.
(4)若要围出满足条件的矩形地块,且和的长均不小于,请直接写出的取值范围.
考点讲解:跨学科的综合与实践,就是利用数学知识和方法解决其它学科的问题,或者把数学与其它学科结合起来,共同解决实际问题.
【例1】
(2022·广西·统考中考真题)
5.综合与实践
【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动,
【实践发现】同学们随机收集芒果树、荔枝树的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:
【实践探究】分析数据如下:
【问题解决】
(1)上述表格中,________,________;
(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”
②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”
上面两位同学的说法中,合理的是________(填序号)
(3)现有一片长,宽的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.
【变1】
(2023·广西·统考中考真题)
6.【综合与实践】
有言道:“杆秤一头称起人间生计,一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案,然后动手制作,再结合实际进行调试,请完成下列方案设计中的任务.
【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:.其中秤盘质量克,重物质量m克,秤砣质量M克,秤纽与秤盘的水平距离为l厘米,秤纽与零刻线的水平距离为a厘米,秤砣与零刻线的水平距离为y厘米.
【方案设计】
目标:设计简易杆秤.设定,,最大可称重物质量为1000克,零刻线与末刻线的距离定为50厘米.
任务一:确定l和a的值.
(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于l,a的方程;
(2)当秤盘放入质量为1000克的重物,秤砣从零刻线移至末刻线时,杆秤平衡,请列出关于l,a的方程;
(3)根据(1)和(2)所列方程,求出l和a的值.
任务二:确定刻线的位置.
(4)根据任务一,求y关于m的函数解析式;
(5)从零刻线开始,每隔100克在秤杆上找到对应刻线,请写出相邻刻线间的距离.
(2023·广东·统考中考真题)
7.综合与实践
主题:制作无盖正方体形纸盒
素材:一张正方形纸板.
步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;
步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.
猜想与证明:
(1)直接写出纸板上与纸盒上的大小关系;
(2)证明(1)中你发现的结论.
(2023·广西北海·统考二模)
8.综合与实践【数学理解】德国数学家米勒曾提出最大视角问题,对该问题的一般描述是:如图2,已知点,是的边上的两个定点,是边上的一个动点,当且仅当的外接圆与边相切于点时,最大.人们称这一命题为米勒定理.
(1)【问题提出】如图1,在足球比赛场上,甲、乙两名队员互相配合向对方球门进攻,当甲带球冲到点时,乙已跟随冲到点,仅从射门角度大小考虑,甲是自己射门好,还是迅速将球回传给乙,让乙射门好?假设球员对球门的视角越大,足球越容易被踢进.请结合你所学知识,求证:.
(2)【问题解决】如图3,已知点,的坐标分别是,,是轴正半轴上的一动点,当的外接圆⊙与轴相切于点时,最大.当最大时,求点的坐标.
(2023·山东临沂·统考中考真题)
9.综合与实践
问题情境
小莹妈妈的花卉超市以15元/盆的价格新购进了某种盆栽花卉,为了确定售价,小莹帮妈妈调查了附近A,B,C,D,E五家花卉店近期该种盆栽花卉的售价与日销售量情况,记录如下:
数据整理
(1)请将以上调查数据按照一定顺序重新整理,填写在下表中:
模型建立
(2)分析数据的变化规律,找出日销售量与售价间的关系;
拓广应用
(3)根据以上信息,小莹妈妈在销售该种花卉中,
①要想每天获得400元的利润,应如何定价?
②售价定为多少时,每天能够获得最大利润?
(2022·宁夏·中考真题)
10.综合与实践
知识再现
如图,中,,分别以、、为边向外作的正方形的面积为、、.当,时,______.
问题探究
如图,中,.
(1)如图,分别以、、为边向外作的等腰直角三角形的面积为、、,则、、之间的数量关系是______.
(2)如图,分别以、、为边向外作的等边三角形的面积为、、,试猜想、、之间的数量关系,并说明理由.
实践应用
(1)如图,将图中的绕点逆时针旋转一定角度至,绕点顺时针旋转一定角度至,、相交于点.求证:;
(2)如图,分别以图中的边、、为直径向外作半圆,再以所得图形为底面作柱体,、、为直径的半圆柱的体积分别为、、.若,柱体的高,直接写出的值.
(2022·甘肃兰州·统考中考真题)
11.综合与实践
问题情境:我国东周到汉代一些出土实物上反映出一些几何作图方法,如侯马铸铜遗址出土车軎范、芯组成的(如图1),它的端面是圆形,如图2是用“矩”(带直角的角尺)确定端面圆心的方法:将“矩”的直角尖端A沿圆周移动,直到,在圆上标记A,B,C三点;将“矩”向右旋转,使它左侧边落在A,B点上,“矩”的另一条边与圆的交点标记为D点,这样就用“矩”确定了圆上等距离的A,B,C,D四点,连接AD,BC相交于点,这样就用“矩”确定了圆上等距离的A,B,C,D四点,连接AD,BC相交于点O,即O为圆心.
(1)问题解决:请你根据“问题情境”中提供的方法,用三角板还原我国古代几何作图确定圆心O.如图3,点A,B,C在上,,且,请作出圆心O.(保留作图痕迹,不写作法)
(2)类比迁移:小梅受此问题的启发,在研究了用“矩”(带直角的角尺)确定端面圆心的方法后发现,如果AB和AC不相等,用三角板也可以确定圆心O.如图4,点A,B,C在上,,请作出圆心O.(保留作图痕迹,不写作法)
(3)拓展探究:小梅进一步研究,发现古代由“矩”度量确定圆上等距离点时存在误差,用平时学的尺规作图的方法确定圆心可以减少误差.如图5,点A,B,C是上任意三点,请用不带刻度的直尺和圆规作出圆心O.(保留作图痕迹,不写作法)请写出你确定圆心的理由:______________________________.
(2023·广西桂林·统考一模)
12.综合与实践
[问题情境]学习完《解直角三角形的应用》后,同学们对如何建立解直角三角形的模型测量物体的实际高度产生了浓厚的兴趣,数学老师决定开展一次主题为《测量学校旗杆高度》的数学实践活动,并为各小组准备了卷尺、测角仪等工具,要求各小组建立测高模型并测量学校旗杆的高度.
[问题探究]第一小组的同学经过讨论,制定出了如下测量实施方案:
第一步,建立测高模型,画出测量示意图(如图1),明确需要测量的数据和测量方法:用卷尺测量测角仪的高度和测角仪底部与旗杆底部之间的距离,用测角仪测量旗杆顶端的仰角;
第二步,进行组员分工,制作测量数据记录表;
第三步,选择不同的位置测量三次,依次记录测量数据;
第四步,整理数据,计算旗杆的高,撰写研究报告.
如表是该组同学研究报告中的数据记录和计算结果:
(1)表中的值为 ;该小组选择不同的位置测量三次,再以三次测量计算的旗杆高度的平均数作为研究结论,这样做的目的是 .
(2)该测量模型中,若,仰角为,用含的代数式表示旗杆的高度为 .
[拓展应用]
(3)第二小组同学设计的是另外一种测量方案,他们画出的测量示意图如图2,测量时,固定测角仪的高度为m,先在点C处测得旗杆顶端B的仰角,然后朝旗杆方向前进m到达点H处,再次测得旗杆顶端B的仰角,请你帮他们求出旗杆的高度(结果保留根号).
(2022·山西·中考真题)
13.综合与实践
问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:
(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;
问题解决:
(2)如图②,在三角板旋转过程中,当时,求线段CN的长;
(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.
(2023·江苏·统考中考真题)
14.综合与实践
定义:将宽与长的比值为(为正整数)的矩形称为阶奇妙矩形.
(1)概念理解:
当时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽()与长的比值是_________.
(2)操作验证:
用正方形纸片进行如下操作(如图(2)):
第一步:对折正方形纸片,展开,折痕为,连接;
第二步:折叠纸片使落在上,点的对应点为点,展开,折痕为;
第三步:过点折叠纸片,使得点分别落在边上,展开,折痕为.
试说明:矩形是1阶奇妙矩形.
(3)方法迁移:
用正方形纸片折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.
(4)探究发现:
小明操作发现任一个阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点为正方形边上(不与端点重合)任意一点,连接,继续(2)中操作的第二步、第三步,四边形的周长与矩形的周长比值总是定值.请写出这个定值,并说明理由.
(2023·青海·统考中考真题)
15.综合与实践
车轮设计成圆形的数学道理
小青发现路上行驶的各种车辆,车轮都是圆形的.为什么车轮要做成圆形的呢?这里面有什么数学道理吗?带着这样的疑问,小青做了如下的探究活动:
将车轮设计成不同的正多边形,在水平地面上模拟行驶.
(1)探究一:将车轮设计成等边三角形,转动过程如图1,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,,圆心角.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是(水平线),请在图2中计算C到的距离.
(2)探究二:将车轮设计成正方形,转动过程如图3,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,,圆心角.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是(水平线),请在图4中计算C到的距离(结果保留根号).
(3)探究三:将车轮设计成正六边形,转动过程如图5,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,圆心角______.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是(水平线),在图6中计算C到的距离______(结果保留根号).
(4)归纳推理:比较,,大小:______,按此规律推理,车轮设计成的正多边形边数越多,其中心轨迹最高点与转动一次前后中心连线(水平线)的距离______(填“越大”或“越小”).
(5)得出结论:将车轮设计成圆形,转动过程如图7,其中心(即圆心)的轨迹与水平地面平行,此时中心轨迹最高点与转动前后中心连线(水平线)的距离______.这样车辆行驶平稳、没有颠簸感.所以,将车轮设计成圆形.
周次x
第一周
第二周
第三周
第四周
第五周
第六周
第七周
第八周
来访旅客量y(万人次)
8
11
12
11
15
17
18
20
1
2
3
4
5
6
7
8
9
10
芒果树叶的长宽比
3.8
3.7
3.5
3.4
3.8
4.0
3.6
4.0
3.6
4.0
荔枝树叶的长宽比
2.0
2.0
2.0
2.4
1.8
1.9
1.8
2.0
1.3
1.9
平均数
中位数
众数
方差
芒果树叶的长宽比
3.74
m
4.0
0.0424
荔枝树叶的长宽比
1.91
2.0
n
0.0669
售价(元/盆)
日销售量(盆)
A
20
50
B
30
30
C
18
54
D
22
46
E
26
38
售价(元/盆)
日销售量(盆)
测量组别
的长(米)
的长(米)
仰角
计算的高(米)
位置1
位置2
位置3
平均值
研究结论:旗杆的高为米
参考答案:
1.(1)(2)证明见解析,拓展应用:
【分析】(1)利用等边对等角求出的长,翻折得到,,利用三角形内角和定理求出,,,表示出即可;
(2)证明,利用相似比进行求解即可得出;
拓展应用:连接,延长至点,使,连接,得到为黄金三角形,进而得到,求出的长即可.
【详解】解:(1)∵,,
∴,
∵将折叠,使边落在边上,
∴,,
∴,;
故答案为:;
(2)证明:∵,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴,
整理,得:,
解得:(负值已舍掉);
经检验是原分式方程的解.
∴;
拓展应用:
如图,连接,延长至点,使,连接,
∵在菱形中,,,
∴,
∴,
∴,
∴,
∴为黄金三角形,
∴,
∴.即菱形的较长的对角线的长为.
【点睛】本题考查等腰三角形的判定和性质,菱形的性质,相似三角形的判定和性质.解题的关键是理解并掌握黄金三角形的定义,利用相似三角形的判定和性质,得到黄金三角形的底边与腰长的比为.
2.(1)菱形;(2)证明见解答;(3),证明见解析;(4),理由见解析
【分析】(1)由折叠可得:,,再证得,可得,利用菱形的判定定理即可得出答案;
(2)设与交于点,过点作于,利用勾股定理可得,再证明,可求得,进而可得,再由,可求得,,,运用勾股定理可得,运用勾股定理逆定理可得,进而可得,即可证得结论;
(3)设,则,利用折叠的性质和平行线性质可得:,再运用三角形内角和定理即可求得,利用解直角三角形即可求得答案;
(4)过点作于,设交于,设,,利用解直角三角形可得,,即可得出结论.
【详解】解:(1)当点与点重合时,四边形是菱形.
理由:设与交于点,如图,
由折叠得:,,
,
四边形是矩形,
,
,
,
,
四边形是菱形.
故答案为:菱形.
(2)证明:四边形是矩形,,,,
,,,
,
,
如图,设与交于点,过点作于,
由折叠得:,,,
,
,
,
,即,
,
,
,,
,
,即,
,,
,
,
,,
,
,
,
点,,在同一条直线上.
(3)当时,始终有与对角线平行.
理由:如图,设、交于点,
四边形是矩形,
,,
,
设,
则,
由折叠得:,,
,,
,
,
,
,
,即,
,
,
,
;
(4),理由如下:
如图,过点作于,设交于,
由折叠得:,,,
设,,
由(3)得:,
,
,
,,
,
四边形是矩形,
,,,
,
,
,
,
,
,
,
,
,
,
,
即.
【点睛】本题是四边形综合题,考查了矩形的性质和判定,菱形的判定,勾股定理,直角三角形性质,等腰三角形性质,平行线性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等,涉及知识点多,综合性强,难度较大.
3.(1)14
(2)2.8万人
(3)估计第9周来访的旅客量约是21.7万人
【分析】(1)根据平均数的概念求解即可;
(2)根据游玩一天所占的百分比求解即可;
(3)将代入求解即可.
【详解】(1),
∴这8周每周来访旅客的平均人数有14万人,
故答案为:14;
(2)万人
答:平均每周到访该市只游玩一天的游客人数为2.8万人;
(3)由题意可得,当时,
,
答:估计第9周来访的旅客量约是21.7万人.
【点睛】此题考查了统计图和扇形统计图,求一次函数值等知识,解题的关键是熟练掌握以上知识点.
4.(1);4;2;(2)不能围出,理由见解析;(3)图见解析,;(4)
【分析】(1)联立反比例函数和一次函数表达式,求出交点坐标,即可解答;
(2)根据得出,,在图中画出的图象,观察是否与反比例函数图像有交点,若有交点,则能围成,否则,不能围成;
(3)过点作的平行线,即可作出直线的图象,将点代入,即可求出a的值;
(4)根据存在交点,得出方程有实数根,根据根的判别式得出,再得出反比例函数图象经过点,,则当与图象在点左边,点右边存在交点时,满足题意;根据图象,即可写出取值范围.
【详解】解:(1)∵反比例函数,直线:,
∴联立得:,
解得:,,
∴反比例函与直线:的交点坐标为和,
当木栏总长为时,能围出矩形地块,分别为:,;或,.
故答案为:4;2.
(2)不能围出.
∵木栏总长为,
∴,则,
画出直线的图象,如图中所示:
∵与函数图象没有交点,
∴不能围出面积为的矩形;
(3)如图中直线所示,即为图象,
将点代入,得:,
解得;
(4)根据题意可得∶ 若要围出满足条件的矩形地块, 与图象在第一象限内交点的存在问题,
即方程有实数根,
整理得:,
∴,
解得:,
把代入得:,
∴反比例函数图象经过点,
把代入得:,解得:,
∴反比例函数图象经过点,
令,,过点,分别作直线的平行线,
由图可知,当与图象在点A右边,点B左边存在交点时,满足题意;
把代入得:,
解得:,
∴.
【点睛】本题主要考查了反比例函数和一次函数综合,解题的关键是正确理解题意,根据题意得出等量关系,掌握待定系数法,会根据函数图形获取数据.
5.(1)3.75,2.0
(2)②
(3)这片树叶更可能来自于荔枝,理由见解析
【分析】(1)根据中位数和众数的定义求解即可;
(2)根据方差的定义,方差越小,形状差别越小,根据树叶的长宽比的平均数、中位数和众数来看,即可判断荔枝树叶的长宽比;
(3)计算该树叶的长宽比即可判断来自哪颗树.
【详解】(1)芒果树叶的长宽比中数据从小到大排序处在第5、6位的两个数的平均数为,因此中位数m=3.75;
荔枝树叶的长宽比中数据出现次数最多的是2.0,因此众数n=2.0;
故答案为:3.75,2.0;
(2)合理的是②,理由如下:从树叶的长宽比的方差来看,芒果树叶的长宽比的方差较小,所以芒果叶形状差别更小;从树叶的长宽比的平均数、中位数和众数来看,荔枝树叶的长宽比为2,所以荔枝树叶的长约为宽的两倍;
故答案为:②;
(3)这片树叶更可能来自荔枝,理由如下:
这片树叶长,宽 ,长宽比大约为2.0,
根据平均数这片树叶可能来自荔枝树.
【点睛】本题考查了统计图中中位数、众数、平均数、方差的意义,看懂统计图表,正确的计算是解决问题的关键.
6.(1)
(2)
(3)
(4)
(5)相邻刻线间的距离为5厘米
【分析】(1)根据题意可直接进行求解;
(2)根据题意可直接代值求解;
(3)由(1)(2)可建立二元一次方程组进行求解;
(4)根据(3)可进行求解;
(5)分别把,,,,,,,,,,代入求解,然后问题可求解.
【详解】(1)解:由题意得:,
∴,
∴;
(2)解:由题意得:,
∴,
∴;
(3)解:由(1)(2)可得:,
解得:;
(4)解:由任务一可知:,
∴,
∴;
(5)解:由(4)可知,
∴当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;当时,则有;
∴相邻刻线间的距离为5厘米.
【点睛】本题主要考查一次函数的应用,解题的关键是理解题意.
7.(1)
(2)证明见解析.
【分析】(1)和均是等腰直角三角形,;
(2)证明是等腰直角三角形即可.
【详解】(1)解:
(2)证明:连接,
设小正方形边长为1,则,,
,
为等腰直角三角形,
∵,
∴为等腰直角三角形,
,
故
【点睛】此题考查了勾股定理及其逆定理的应用和等腰三角形的性质,熟练掌握其性质是解答此题的关键.
8.(1)见解析
(2)
【分析】(1)根据三角形的外角和,同弧或者等弧所对的圆周角相等,即可;
(2)当的外接圆⊙与轴相切于点时,最大,连接,,过点作于点,根据垂径定理,勾股定理,即可求出.
【详解】(1)证明:由图可知:∵,是所对的圆周角,
∴,
∵,
∴,
∴.
(2)当的外接圆⊙与轴相切于点时,最大,
∴连接,,过点作于点,
∴四边形是矩形,
∴,,
∵,,
∴,
∴在中,,
∵点,的坐标分别是,,
∴,,
∴,,
∴,
∴,
∴点.
【点睛】本题考查圆的基本性质,解题的关键是掌握同弧或者等弧所对的圆周角和圆心角的关系,垂径定理,圆的切线定理.
9.(1)见解析
(2)售价每涨价2元,日销售量少卖4盆
(3)①定价为每盆元或每盆元时,每天获得400元的利润;②售价定为元时,每天能够获得最大利润
【分析】(1)按照从小到大的顺序进行排列即可;
(2)根据表格数据,进行求解即可;
(3)①设定价应为元,根据题意,列出一元二次方程,进行求解即可;
②设每天的利润为,列出二次函数表示式,利用二次函数的性质,进行求解即可.
【详解】(1)解:按照售价从低到高排列列出表格如下:
(2)由表格可知,售价每涨价2元,日销售量少卖4盆;
(3)①设:定价应为元,由题意,得:
,
整理得:,
解得:,
∴定价为每盆元或每盆元时,每天获得400元的利润;
②设每天的利润为,由题意,得:
,
∴,
∵,
∴当时,有最大值为元.
答:售价定为元时,每天能够获得最大利润.
【点睛】本题考查一元二次方程和二次函数的实际应用.从表格中有效的获取信息,正确的列出方程和二次函数,是解题的关键.
10.知识再现 ;
问题探究:(1);(2);理由见解析;
实践应用:(1)见解析;(2).
【分析】知识再现:利用勾股定理和正方形的面积公式可求解;
问题探究:(1)利用勾股定理和直角三角形的面积公式可求解;
(2)过点D作DG⊥BC交于G,分别求出,,,由勾股定理可得,即可求S4+S5=S6;
实践应用:(1)设AB=c,BC=a,AC=b,则HN=a+b-c,FG=c-a,MF=c-b,可证明△HNP是等边三角形,四边形MFGP是平行四边形,则,,再由,可证明.
(2)设AB=c,BC=a,AC=b,以AB为直径的圆的面积为S3、以BC为直径的圆的面积为S1、以AC为直径的圆的面积为S2,可得S1+S2=S3,又由,即可求.
【详解】知识再现:解:中,,
,
,
,,
,
故答案为:;
问题探究:解:中,,
,
,
,
故答案为:;
解:中,,
,
过点作交于,
在等边三角形中,,,
,
,
同理可得,,
,
;
实践应用:证明:设,,,
,,,
是等边三角形,是等边三角形,
,,
,
是等边三角形,四边形是平行四边形,
,,
是直角三角形,
,
,
;
解:设,,,以为直径的圆的面积为、以为直径的圆的面积为、以为直径的圆的面积为,
是直角三角形,
,
,
,
,,,
,
,,
,
.
【点睛】本题考查四边形的综合应用,熟练掌握直角三角形的勾股定理,等边三角形的性质,圆的性质,圆柱的体积,平行线的性质是解题的关键.
11.(1)见解析
(2)见解析
(3)见解析
【分析】(1)作∠ABD=90°, BD与圆相交于D,连接BC、AD相交 于点O,即可;
(2)作∠ABD=90°, BD与圆相交于D,连接BC、AD相交 于点O,即可;
(3)作AB的垂直平分线DE,作AC的垂直平分线MN,DE交MN于O,即可,则垂径定理得出确定圆心的理由即可.
【详解】(1)解:如图所示,点O就是圆的圆心.
作∠ABD=90°, BD与圆相交于D,连接BC、AD相交 于点O,
∵∠CAB=∠ABD=90°,
∴BC、AD是圆的直径,
∴点O是圆的圆心.
(2)解:如图所示,点O就是圆的圆心.
作∠ABD=90°, BD与圆相交于D,连接BC、AD相交 于点O,
∵∠CAB=∠ABC=90°,
∴BC、AD是圆的直径,
∴点O是圆的圆心.
(3)解:如图所示 ,点O就是圆的圆心.
作AB的垂直平分线DE,作AC的垂直平分线MN,DE交MN于O,
∵DE垂直平分AB,
∴DE经过圆心,即圆心必在直线DE上,
∵MN垂直平分AC,
∴MN经过圆心,即圆心必在直线MN上,
∴DE与MN的交点O是圆心.
确定圆心的理由:弦的垂直平分线经过圆心.
【点睛】本题考查圆周角定理的推论,垂径定理的推论,尺规作线段垂直平分线,熟练掌握直角的圆周角所对的弦是直径是解题的关键.
12.(1);减小误差
(2)
(3)旗杆的高度为m
【分析】(1)表中n的值为三次测量的平均值:;该小组选择不同的位置测量三次,再以三次测量计算的旗杆高度的平均数作为研究结论,这样做的目的是减小误差;
(2)在中,,根据锐角三角函数即可得出,即可得出答案;
(3)根据是的外角,即可得到出,故,可得出,在中,根据锐角三角函数即可得出,即可得出旗杆的高度为.
【详解】(1)解:表中n的值为;该小组选择不同的位置测量三次,再以三次测量计算的旗杆高度的平均数作为研究结论,这样做的目的是减小误差,
故答案为:;减小误差;
(2)由题意得:,
在中,,
∴,
∴,
故答案为:;
(3)由题意得:,,,,
∵是的外角,
∴,
∴,
∴,
在中,,
∴,
∴旗杆的高度为.
【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.
13.(1)四边形AMDN为矩形;理由见解析;(2);(3).
【分析】(1)由三角形中位线定理得到,证明∠A=∠AMD=∠MDN=90°,即可证明结论;
(2)证明△NDC是等腰三角形,过点N作NG⊥BC于点G,证明△CGN∽△CAB,利用相似三角形的性质即可求解;
(3)延长ND,使DH=DN,证明△BDH≌△CDN,推出BH=CN,∠DBH=∠C,证明∠MBH=90°,设AM=AN=x,在Rt△BMH中,利用勾股定理列方程,解方程即可求解.
【详解】解:(1)四边形AMDN为矩形.
理由如下:∵点M为AB的中点,点D为BC的中点,
∴,
∴∠AMD+∠A=180°,
∵∠A=90°,
∴∠AMD=90°,
∵∠EDF=90°,
∴∠A=∠AMD=∠MDN=90°,
四边形AMDN为矩形;
(2)在Rt△ABC中,∠A=90°,AB=6,AC=8,
∴∠B+∠C=90°,.
∵点D是BC的中点,
∴CD=BC=5.
∵∠EDF=90°,
∴∠MDB+∠1=90°.
∵∠B=∠MDB,
∴∠1=∠C.
∴ND=NC.
过点N作NG⊥BC于点G,则∠CGN=90°.
∴CG=CD=.
∵∠C=∠C,∠CGN=∠CAB=90°,
∴△CGN∽△CAB.
∴,即,
∴;
(3)延长ND至H,使DH=DN,连接MH,NM,BH,
∵MD⊥HN,∴MN=MH,
∵D是BC中点,
∴BD=DC,
又∵∠BDH=∠CDN,
∴△BDH≌△CDN,
∴BH=CN,∠DBH=∠C,
∵∠BAC=90°,
∵∠C+∠ABC=90°,
∴∠DBH+∠ABC=90°,
∴∠MBH=90°,
设AM=AN=x,则BM=6-x,BH=CN=8-x,MN=MH=x,
在Rt△BMH中,BM2+BH2=MH2,
∴(6-x)2+(8-x)2=(x)2,
解得x=,
∴线段AN的长为.
【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,矩形的判定,勾股定理,解第(3)问的关键是学会利用参数构建方程解决问题.
14.(1);(2)见解析;(3),理由见解析
【分析】(1)将代入,即可求解.
(2)设正方形的边长为,根据折叠的性质,可得,设,则,在中,勾股定理建立方程,解方程,即可求解;
(3)仿照(2)的方法得出2阶奇妙矩形.
(4)根据(2)的方法,分别求得四边形的周长与矩形的周长,即可求解.
【详解】解:(1)当时,,
故答案为:.
(2)如图(2),连接,
设正方形的边长为,根据折叠的性质,可得
设,则
根据折叠,可得,,
在中,,
∴,
在中,
∴
解得:
∴
∴矩形是1阶奇妙矩形.
(3)用正方形纸片进行如下操作(如图):
第一步:对折正方形纸片,展开,折痕为,再对折,折痕为,连接;
第二步:折叠纸片使落在上,点的对应点为点,展开,折痕为;
第三步:过点折叠纸片,使得点分别落在边上,展开,折痕为.
矩形是2阶奇妙矩形,
理由如下,连接,设正方形的边长为,根据折叠可得,则,
设,则
根据折叠,可得,,
在中,,
∴,
在中,
∴
解得:
∴
当时,
∴矩形是2阶奇妙矩形.
(4)如图(4),连接诶,设正方形的边长为1,设,则,
设,则
根据折叠,可得,,
在中,,
∴,
在中,
∴
整理得,
∴四边形的边长为
矩形的周长为,
∴四边形的周长与矩形的周长比值总是定值
【点睛】本题考查了正方形的折叠问题,勾股定理,熟练掌握折叠的性质是解题的关键.
15.(1)1
(2)
(3)
(4),越小
(5)0
【分析】(1)是等边三角形,进而求得,进一步得出结果;
(2)是等腰直角三角形,进而求得,进一步得出结果;
(3)是等边三角形,进而求得,进一步得出结果;
(4)比较大小得出结果;
(5)圆的半径相等,从而得出结果.
【详解】(1)解:图1,
,,
,
,
是等边三角形,
,
∵C为的中点,为半径,
∴,
;
(2)解:如图2,
,,,
,
,
;
(3)解:如图3,
,,
是等边三角形,
,
在中,
,
,
故答案为:,;
(4)解:,
,则其中心轨迹最高点与转动一次前后中心连线(水平线)的距离越小;
故答案为:;越小.
(5)解:圆的半径相等,
,
故答案为:0.
【点睛】本题考查了等腰三角形的性质,正方形的性质,圆的定义,解直角三角形等知识,解决问题的关键是弄清数量间的关系.
售价(元/盆)
18
20
22
26
30
日销售量(盆)
54
50
46
38
30
相关试卷
这是一份模块四 题型全通关专题3 解答型题型第7讲 应用题 -最新中考数学二轮专题复习训练(含解析),共34页。
这是一份模块四 题型全通关专题3 解答型题型第6讲 阅读题 -最新中考数学二轮专题复习训练(含解析),共35页。试卷主要包含了,分式的性质;等内容,欢迎下载使用。
这是一份模块四 题型全通关专题3 解答型题型第5讲 探究题 -最新中考数学二轮专题复习训练(含解析),共67页。