专题05 数列下的新定义-2025年新高考数学突破新定义压轴题综合讲义
展开这是一份专题05 数列下的新定义-2025年新高考数学突破新定义压轴题综合讲义,文件包含专题05数列下的新定义七大题型教师版-2025年新高考数学突破新定义压轴题综合讲义docx、专题05数列下的新定义七大题型学生版-2025年新高考数学突破新定义压轴题综合讲义docx等2份试卷配套教学资源,其中试卷共85页, 欢迎下载使用。
题型一:牛顿数列问题
题型二:高考真题下的数列新定义
题型三:数列定义新概念
题型四:数列定义新运算
题型五:数列定义新情景
题型六:差分数列、对称数列
题型七:非典型新定义数列
【方法技巧与总结】
1、“新定义型”数列题考查了学生阅读和理解能力,同时考查了学生对新知识、新事物接受能力和加以简单运用的能力,考查了学生探究精神.要求解题者通过观察、阅读、归纳、探索进行迁移,即读懂和理解新定义,获取有用的新信息,然后运用这些有效的信息进一步推理,综合运用数学知识解决问题的能力和探索能力(多想少算甚至不算).因此,“新定义型”数列在高考中常有体现,是一种用知识归类、套路总结、强化训练等传统教学方法却难以解决高考中不断出现的新颖试题.
2、解答与数列有关的新定义问题的策略:
(1)通过给定的与数列有关的新定义,或约定的一种新运算,或给出的由几个新模型来创设的新问题的情景,要求在阅读理解的基础上,依据题设所提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.
(2)遇到新定义问题,需耐心研究题中信息,分析新定义的特点,搞清新定义的本质,按新定义的要求“照章办事”,逐条分析、运算、验证,使问题得以顺利解决.
(3)类比“熟悉数列”的研究方式,用特殊化的方法研究新数列,向“熟悉数列”的性质靠拢.
【典型例题】
题型一:牛顿数列问题
【典例1-1】(2024·广东韶关·二模)记上的可导函数的导函数为,满足的数列称为函数的“牛顿数列”.已知数列为函数的牛顿数列,且数列满足.
(1)求;
(2)证明数列是等比数列并求;
(3)设数列的前项和为,若不等式对任意的恒成立,求t的取值范围.
【典例1-2】(2024·高二·浙江绍兴·期末)物理学家牛顿用“作切线”的方法求函数零点时,给出了“牛顿数列”,它在航空航天中应用非常广泛.其定义是:对于函数,若满足,则称数列为牛顿数列.已知,如图,在横坐标为的点处作的切线,切线与x轴交点的横坐标为,用代替重复上述过程得到,一直下去,得到数列.
(1)求数列的通项公式;
(2)若数列的前n项和为,且对任意的,满足,求整数的最小值.(参考数据:,,,)
【变式1-1】(2024·广东广州·二模)已知函数.
(1)证明:恰有一个零点,且;
(2)我们曾学习过“二分法”求函数零点的近似值,另一种常用的求零点近似值的方法是“牛顿切线法”.任取,实施如下步骤:在点处作的切线,交轴于点:在点处作的切线,交轴于点;一直继续下去,可以得到一个数列,它的各项是不同精确度的零点近似值.
(i)设,求的解析式;
(ii)证明:当,总有.
题型二:高考真题下的数列新定义
【典例2-1】(2024年高考新课卷1)设m为正整数,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列.
(1)写出所有的,,使数列是可分数列;
(2)当时,证明:数列是可分数列;
(3)从中一次任取两个数和,记数列是可分数列的概率为,证明:.
【典例2-2】(2024年高考新课卷2)已知双曲线,点在上,为常数,.按照如下方式依次构造点,过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.
(1)若,求;
(2)证明:数列是公比为的等比数列;
(3)设为的面积,证明:对任意的正整数,.
【典例2-3】(2023·北京·高考真题)已知数列的项数均为m,且的前n项和分别为,并规定.对于,
定义,其中,表示数集M中最大的数.
(1)若,求的值;
(2)若,且,求;
(3)证明:存在,满足 使得.
【典例2-4】(2022·北京·高考真题)已知为有穷整数数列.给定正整数m,若对任意的,在Q中存在,使得,则称Q为连续可表数列.
(1)判断是否为连续可表数列?是否为连续可表数列?说明理由;
(2)若为连续可表数列,求证:k的最小值为4;
(3)若为连续可表数列,且,求证:.
【变式2-1】(2021·北京·高考真题)设p为实数.若无穷数列满足如下三个性质,则称为数列:
①,且;
②;
③,.
(1)如果数列的前4项为2,-2,-2,-1,那么是否可能为数列?说明理由;
(2)若数列是数列,求;
(3)设数列的前项和为.是否存在数列,使得恒成立?如果存在,求出所有的p;如果不存在,说明理由.
【变式2-2】(2020·北京·高考真题)已知是无穷数列.给出两个性质:
①对于中任意两项,在中都存在一项,使;
②对于中任意项,在中都存在两项.使得.
(Ⅰ)若,判断数列是否满足性质①,说明理由;
(Ⅱ)若,判断数列是否同时满足性质①和性质②,说明理由;
(Ⅲ)若是递增数列,且同时满足性质①和性质②,证明:为等比数列.
题型三:数列定义新概念
【典例3-1】(2024·广西南宁·一模)若无穷数列满足,则称数列为数列,若数列同时满足,则称数列为数列.
(1)若数列为数列,,证明:当时,数列为递增数列的充要条件是;
(2)若数列为数列,,记,且对任意的,都有,求数列的通项公式.
【典例3-2】(2024·山东泰安·一模)已知各项均不为0的递增数列的前项和为,且(,且).
(1)求数列的前项和;
(2)定义首项为2且公比大于1的等比数列为“-数列”.证明:
①对任意且,存在“-数列”,使得成立;
②当且时,不存在“-数列”,使得对任意正整数成立.
【变式3-1】(2024·江西南昌·一模)对于各项均不为零的数列,我们定义:数列为数列的“比分数列”.已知数列满足,且的“比分数列”与的“2-比分数列”是同一个数列.
(1)若是公比为2的等比数列,求数列的前项和;
(2)若是公差为2的等差数列,求.
题型四:数列定义新运算
【典例4-1】(2024·江苏徐州·一模)对于每项均是正整数的数列P:,定义变换,将数列P变换成数列:.对于每项均是非负整数的数列,定义,定义变换,将数列Q各项从大到小排列,然后去掉所有为零的项,得到数列.
(1)若数列为2,4,3,7,求的值;
(2)对于每项均是正整数的有穷数列,令,.
(i)探究与的关系;
(ii)证明:.
【典例4-2】(2024·江西赣州·一模)设数列.如果对小于的每个正整数都有.则称是数列的一个“时刻”.记是数列的所有“时刻”组成的集合,的元素个数记为.
(1)对数列,写出的所有元素;
(2)数列满足,若.求数列的种数.
(3)证明:若数列满足,则.
【变式4-5】(2024·高三·山东·开学考试)在无穷数列中,令,若,,则称对前项之积是封闭的.
(1)试判断:任意一个无穷等差数列对前项之积是否是封闭的?
(2)设是无穷等比数列,其首项,公比为.若对前项之积是封闭的,求出的两个值;
(3)证明:对任意的无穷等比数列,总存在两个无穷数列和,使得,其中和对前项之积都是封闭的.
【变式4-6】(2024·福建泉州·模拟预测)表示正整数a,b的最大公约数,若,且,,则将k的最大值记为,例如:,.
(1)求,,;
(2)已知时,.
(i)求;
(ii)设,数列的前n项和为,证明:.
题型五:数列定义新情景
【典例5-1】(2024·海南·模拟预测)若有穷数列(是正整数),满足(,且,就称该数列为“数列”.
(1)已知数列是项数为7的数列,且成等比数列,,试写出的每一项;
(2)已知是项数为的数列,且构成首项为100,公差为的等差数列,数列的前项和为,则当为何值时,取到最大值?最大值为多少?
(3)对于给定的正整数,试写出所有项数不超过的数列,使得成为数列中的连续项;当时,试求这些数列的前2024项和.
【典例5-2】(2024·高三·全国·专题练习)将平面直角坐标系中的一列点、、、、,记为,设,其中为与轴方向相同的单位向量.若对任意的正整数,都有,则称为点列.
(1)判断、、、、、是否为点列,并说明理由;
(2)若为点列,且任取其中连续三点、、,证明为钝角三角形;
(3)若为点列,对于正整数、、,比较与的大小,并说明理由.
【变式5-1】(2024·辽宁葫芦岛·一模)大数据环境下数据量积累巨大并且结构复杂,要想分析出海量数据所蕴含的价值,数据筛选在整个数据处理流程中处于至关重要的地位,合适的算法就会起到事半功倍的效果.现有一个“数据漏斗”软件,其功能为;通过操作删去一个无穷非减正整数数列中除以M余数为N的项,并将剩下的项按原来的位置排好形成一个新的无穷非减正整数数列.设数列的通项公式,,通过“数据漏斗”软件对数列进行操作后得到,设前n项和为.
(1)求;
(2)是否存在不同的实数,使得,,成等差数列?若存在,求出所有的;若不存在,说明理由;
(3)若,,对数列进行操作得到,将数列中下标除以4余数为0,1的项删掉,剩下的项按从小到大排列后得到,再将的每一项都加上自身项数,最终得到,证明:每个大于1的奇平方数都是中相邻两项的和.
题型六:差分数列、对称数列
【典例6-1】(2024·全国·模拟预测)给定数列,称为的差数列(或一阶差数列),称数列的差数列为的二阶差数列……
(1)求的二阶差数列;
(2)用含的式子表示的阶差数列,并求其前项和.
【典例6-2】(2024·海南省直辖县级单位·一模)若有穷数列,,…,(是正整数),满足(,且),就称该数列为“数列”.
(1)已知数列是项数为7的数列,且,,,成等比数列,,,试写出的每一项;
(2)已知是项数为()的数列,且,,…,构成首项为100,公差为的等差数列,数列的前项和为,则当为何值时,取到最大值?最大值为多少?
(3)对于给定的正整数,试写出所有项数不超过的数列,使得成为数列中的连续项;当时,试求这些数列的前2024项和.
【变式6-1】(2024·河南开封·二模)在密码学领域,欧拉函数是非常重要的,其中最著名的应用就是在RSA加密算法中的应用.设p,q是两个正整数,若p,q的最大公约数是1,则称p,q互素.对于任意正整数n,欧拉函数是不超过n且与n互素的正整数的个数,记为.
(1)试求,,,的值;
(2)设n是一个正整数,p,q是两个不同的素数.试求,与φ(p)和φ(q)的关系;
(3)RSA算法是一种非对称加密算法,它使用了两个不同的密钥:公钥和私钥.具体而言:
①准备两个不同的、足够大的素数p,q;
②计算,欧拉函数;
③求正整数k,使得kq除以的余数是1;
④其中称为公钥,称为私钥.
已知计算机工程师在某RSA加密算法中公布的公钥是.若满足题意的正整数k从小到大排列得到一列数记为数列,数列满足,求数列的前n项和.
【变式6-2】(2024·贵州·三模)差分密码分析(Differential Cryptanalysis)是一种密码分析方法,旨在通过观察密码算法在不同输入差分下产生的输出差分,来推断出密码算法的密钥信息.对于数列,规定为数列的一阶差分数列,其中;规定为的二阶差分数列,其中.如果的一阶差分数列满足,则称是“绝对差异数列”;如果的二阶差分数列满足,则称是“累差不变数列”.
(1)设数列,判断数列是否为“绝对差异数列”或“累差不变数列”,请说明理由;
(2)设数列的通项公式,分别判断是否为等差数列,请说明理由;
(3)设各项均为正数的数列为“累差不变数列”,其前项和为,且对,都有,对满足的任意正整数都有,且不等式恒成立,求实数的最大值.
题型七:非典型新定义数列
【典例7-1】(2024·高三·全国·专题练习)设数列的各项为互不相等的正整数,前项和为,称满足条件“对任意的,,均有”的数列为“好”数列.
(1)试分别判断数列,是否为“好”数列,其中,,并给出证明;
(2)已知数列为“好”数列,其前项和为.
①若,求数列的通项公式;
②若,且对任意给定的正整数,,有,,成等比数列,求证:.
【典例7-2】(2024·全国·模拟预测)设满足以下两个条件的有穷数列为阶“曼德拉数列”:
①;②.
(1)若某阶“曼德拉数列”是等比数列,求该数列的通项(,用表示);
(2)若某阶“曼德拉数列”是等差数列,求该数列的通项(,用表示);
(3)记阶“曼德拉数列”的前项和为,若存在,使,试问:数列能否为阶“曼德拉数列”?若能,求出所有这样的数列;若不能,请说明理由.
【变式7-1】(2024·湖南长沙·一模)对于数列,如果存在正整数,使得对任意,都有,那么数列就叫做周期数列,叫做这个数列的周期.若周期数列满足:存在正整数,对每一个,都有,我们称数列和为“同根数列”.
(1)判断数列是否为周期数列.如果是,写出该数列的周期,如果不是,说明理由;
(2)若和是“同根数列”,且周期的最小值分别是和,求的最大值.
【过关测试】
1.(2024·天津和平·一模)若数列满足,其中,则称数列为M数列.
(1)已知数列为M数列,当时.
(ⅰ)求证:数列是等差数列,并写出数列的通项公式;
(ⅱ),求.
(2)若是M数列,且,证明:存在正整数n.使得.
2.(2024·黑龙江·二模)如果一个数列从第二项起,每一项与它前一项的比都大于3,则称这个数列为“型数列”.
(1)若数列满足,判断是否为“型数列”,并说明理由;
(2)已知正项数列为“型数列”,,数列满足,,是等比数列,公比为正整数,且不是“型数列”,求数列的通项公式.
3.(2024·浙江·模拟预测)已知实数,定义数列如下:如果,,则.
(1)求和(用表示);
(2)令,证明:;
(3)若,证明:对于任意正整数,存在正整数,使得.
4.(2024·天津·一模)若某类数列满足“,且”,则称这个数列为“型数列”.
(1)若数列满足,求的值并证明:数列是“型数列”;
(2)若数列的各项均为正整数,且为“型数列”,记,数列为等比数列,公比为正整数,当不是“型数列”时,
(i)求数列的通项公式;
(ii)求证:.
5.(2024·高三·浙江·阶段练习)在平面直角坐标系中,我们把点称为自然点.按如图所示的规则,将每个自然点进行赋值记为,例如,.
(1)求;
(2)求证:;
(3)如果满足方程,求的值.
6.(2024·内蒙古包头·二模)已知数列为有穷数列,且,若数列满足如下两个性质,则称数列为的增数列:
①;
②对于,使得的正整数对有个.
(1)写出所有4的1增数列;
(2)当时,若存在的6增数列,求的最小值.
7.(2024·河南郑州·二模)已知数列为有穷数列,且,若数列满足如下两个性质,则称数列为m的k增数列:①;②对于,使得的正整数对有k个.
(1)写出所有4的1增数列;
(2)当时,若存在m的6增数列,求m的最小值;
(3)若存在100的k增数列,求k的最大值.
8.(2024·安徽黄山·一模)随着信息技术的快速发展,离散数学的应用越来越广泛.差分和差分方程是描述离散变量变化的重要工具,并且有广泛的应用.对于数列,规定为数列的一阶差分数列,其中,规定为数列的二阶差分数列,其中.
(1)数列的通项公式为,试判断数列是否为等差数列,请说明理由?
(2)数列是以1为公差的等差数列,且,对于任意的,都存在,使得,求的值;
(3)各项均为正数的数列的前项和为,且为常数列,对满足,的任意正整数都有,且不等式恒成立,求实数的最大值.
9.(2024·北京门头沟·一模)已知数列 , 数列 , 其中 , 且 , . 记 的前 项和分别为 , 规定 .记 ,且 ,, 且
(1)若,,写出 ;
(2)若,写出所有满足条件的数列 , 并说明理由;
(3)若 , 且 . 证明: , 使得 .
10.(2024·河南·一模)在正项无穷数列中,若对任意的,都存在,使得,则称为阶等比数列.在无穷数列中,若对任意的,都存在,使得,则称为阶等差数列.
(1)若为1阶等比数列,,求的通项公式及前项和;
(2)若为阶等比数列,求证:为阶等差数列;
(3)若既是4阶等比数列,又是5阶等比数列,证明:是等比数列.
11.(2024·吉林白山·二模)已知数列的前项和为,若数列满足:①数列项数有限为;②;③,则称数列为“阶可控摇摆数列”.
(1)若等比数列为“10阶可控摇摆数列”,求的通项公式;
(2)若等差数列为“阶可控摇摆数列”,且,求数列的通项公式;
(3)已知数列为“阶可控摇摆数列”,且存在,使得,探究:数列能否为“阶可控摇摆数列”,若能,请给出证明过程;若不能,请说明理由.
12.(2024·高三·贵州贵阳·开学考试)牛顿迭代法是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.比如,我们可以先猜想某个方程的其中一个根在的附近,如图所示,然后在点处作的切线,切线与轴交点的横坐标就是,用代替重复上面的过程得到;一直继续下去,得到,,,……,.从图形上我们可以看到较接近,较接近,等等.显然,它们会越来越逼近.于是,求近似解的过程转化为求,若设精度为,则把首次满足的称为的近似解.
已知函数,.
(1)当时,试用牛顿迭代法求方程满足精度的近似解(取,且结果保留小数点后第二位);
(2)若,求的取值范围.
13.(2024·高二·广东·阶段练习)关于的函数,我们曾在必修一中学习过“二分法”求其零点近似值.现结合导函数,介绍另一种求零点近似值的方法——“牛顿切线法”.
(1)证明:有唯一零点,且;
(2)现在,我们任取(1,a)开始,实施如下步骤:
在处作曲线的切线,交轴于点;
在处作曲线的切线,交轴于点;
……
在处作曲线的切线,交轴于点;
可以得到一个数列,它的各项都是不同程度的零点近似值.
(i)设,求的解析式(用表示);
(ii)证明:当,总有.
14.(2024·高三·山西吕梁·阶段练习)三叉戟是希腊神话中海神波塞冬的武器,而函数的图象恰如其形,因而得名三叉戟函数,因为牛顿最早研究了这个函数的图象,所以也称它为牛顿三叉戟.已知函数的图象经过点,且.
(1)求函数的解析式;
(2)用定义法证明:在上单调递减.
15.(2024·河南信阳·一模)定义:已知数列满足.
(1)若,,求,的值;
(2)若,,使得恒成立.探究:是否存在正整数p,使得,若存在,求出p的可能取值构成的集合;若不存在,请说明理由;
(3)若数列为正项数列,证明:不存在实数A,使得.
16.(2024·高三·江苏镇江·开学考试)对于数列,记,称数列为数列的一阶差分数列;记,称数列为数列的二阶差分数列,…,一般地,对于,记,规定:,称为数列的阶差分数列.对于数列,如果(为常数),则称数列为阶等差数列.
(1)数列是否为阶等差数列,如果是,求值,如果不是,请说明为什么?
(2)请用表示,并归纳出表示的正确结论(不要求证明);
(3)请你用(2)归纳的正确结论,证明:如果数列为阶等差数列,则其前项和为;
(4)某同学用大小一样的球堆积了一个“正三棱锥”,巧合用了2024个球.第1层有1个球,第2层有3个,第3层有6个球,…,每层都摆放成“正三角形”,从第2层起,每层“正三角形”的“边”都比上一层的“边”多1个球,问:这位同学共堆积了多少层?
17.(2020·江苏·高考真题)已知数列的首项a1=1,前n项和为Sn.设λ与k是常数,若对一切正整数n,均有成立,则称此数列为“λ~k”数列.
(1)若等差数列是“λ~1”数列,求λ的值;
(2)若数列是“”数列,且an>0,求数列的通项公式;
(3)对于给定的λ,是否存在三个不同的数列为“λ~3”数列,且an≥0?若存在,求λ的取值范围;若不存在,说明理由,
18.(2015·北京·高考真题)已知数列满足:,,且.记
集合.
(Ⅰ)若,写出集合的所有元素;
(Ⅱ)若集合存在一个元素是3的倍数,证明:的所有元素都是3的倍数;
(Ⅲ)求集合的元素个数的最大值.
19.(2013·北京·高考真题)已知是由非负整数组成的无穷数列,该数列前n项的最大值记为,第n项之后各项,…的最小值记为,.
(1)若为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,),写出的值;
(2)设d为非负整数,证明:(n=1,2,3…)的充分必要条件为为公差为d的等差数列;
(3)证明:若,(n=1,2,3…),则的项只能是1或2,且有无穷多项为1.
20.(2024·高三·北京西城·开学考试)若数列满足:存在和,使得对任意和,都有,则称数列为“数列”;如果数列满足:存在,使得对任意,都有,则称数列为“数列”;
(1)在下列情况下,分别判断是否“数列”,是否“数列”?①,,;②,;
(2)若数列,是“数列”,其中且,求的所有可能值;
(3)设“数列”和“数列”的各项均为正数,定义分段函数,如下:记为“不超过的最大正整数”,证明:若是周期函数,则是“数列”.
相关试卷
这是一份专题06 高等解析几何背景新定义-2025年新高考数学突破新定义压轴题综合讲义,文件包含专题06高等解析几何背景新定义七大题型教师版-2025年新高考数学突破新定义压轴题综合讲义docx、专题06高等解析几何背景新定义七大题型学生版-2025年新高考数学突破新定义压轴题综合讲义docx等2份试卷配套教学资源,其中试卷共77页, 欢迎下载使用。
这是一份专题03 概率与统计下的新定义-2025年新高考数学突破新定义压轴题综合讲义,文件包含专题03概率与统计下的新定义五大题型教师版-2025年新高考数学突破新定义压轴题综合讲义docx、专题03概率与统计下的新定义五大题型学生版-2025年新高考数学突破新定义压轴题综合讲义docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。
这是一份专题02 函数与导数下的新定义-2025年新高考数学突破新定义压轴题综合讲义,文件包含专题02函数与导数下的新定义七大题型教师版-2025年新高考数学突破新定义压轴题综合讲义docx、专题02函数与导数下的新定义七大题型学生版-2025年新高考数学突破新定义压轴题综合讲义docx等2份试卷配套教学资源,其中试卷共109页, 欢迎下载使用。