第51讲 习题课----带电粒子在立体空间运动问题(原卷版)-2025年高考物理一轮复习讲练测(新教材新高考)
展开
这是一份第51讲 习题课----带电粒子在立体空间运动问题(原卷版)-2025年高考物理一轮复习讲练测(新教材新高考),共12页。
TOC \ "1-3" \h \u
\l "_Tc22545" 一.高考展望明方向 PAGEREF _Tc22545 \h 1
\l "_Tc10971" 二.题型分析知考向 PAGEREF _Tc10971 \h 1
\l "_Tc17624" 题型一.带电粒子的螺旋线运动和旋进运动 PAGEREF _Tc17624 \h 1
\l "_Tc21643" 题型二.带电粒子在立体空间中的偏转 PAGEREF _Tc21643 \h 4
\l "_Tc3330" 三.名校金题练素养 PAGEREF _Tc3330 \h 8
\l "_Tc10475" 四.真题练习察动向 PAGEREF _Tc10475 \h 26
一.高考展望明方向
带电粒子在匀强磁场中的运动问题,是每年高考考查的重点和热点,在近几年的高考命题中,又出现了一些带电粒子在立体空间中运动的问题,这样既能考查学生相关的物理知识,又能考查学生的空间想象能力。分析该类问题时,要根据带电粒子依次通过不同的空间,将运动过程分为不同的阶段,只要分析出带电粒子在每个阶段的运动规律,再利用两个空间交界处粒子的运动状态和关联条件即可解决问题。
二.题型分析知考向
题型一.带电粒子的螺旋线运动和旋进运动
空间中匀强磁场的分布是三维的,带电粒子在磁场中的运动情况可以是三维的。现在主要讨论两种情况:
(1)空间中只存在匀强磁场,当带电粒子的速度方向与磁场的方向不平行也不垂直时,带电粒子在磁场中就做螺旋线运动。这种运动可分解为平行于磁场方向的匀速直线运动和垂直于磁场平面的匀速圆周运动。
(2)空间中的匀强磁场和匀强电场(或重力场)平行时,带电粒子在一定的条件下就可以做旋进运动,这种运动可分解为平行于磁场方向的匀变速直线运动和垂直于磁场平面的匀速圆周运动。
【例题1】.如图所示,质子以初速度v进入磁感应强度为B且足够大的匀强磁场中,速度方向与磁场方向的夹角为。已知质子的质量为m,电荷量为e。重力不计,则( )
A.质子运动的轨迹为螺旋线,螺旋线的中轴线方向垂直于纸面向里
B.质子做螺旋线运动的半径为
C.质子做螺旋线运动的周期为
D.一个周期内,质子沿着螺旋线轴线方向运动的距离(即螺距)为
【例题2】某实验装置的基本原理如图所示,平行正对放置半径均为R、间距为d的圆形金属板M、N的圆心分别为、,位于处的粒子源能向两板间各个方向发射质量为m、电荷量为q的带正电的粒子,不计粒子重力及相互间作用,忽略边缘效应。
(1)仅在两板间加电压U,两板间产生方向沿方向的匀强电场。求粒子源发射出的粒子速度大小满足什么条件时能全部击中N板;
(2)仅在两板间加沿方向的有界匀强磁场,磁感应强度大小为B,求粒子源发射出的方向与连线成()角的粒子速度大小满足什么条件时能全部击中N板;
(3)若两板间同时存在方向都沿方向的匀强电场和匀强磁场,磁感应强度大小为B,粒子源发射出速度大小均为v,方向垂直于连线的粒子,全部落在半径为的圆周上(),求电场强度的大小。
题型二.带电粒子在立体空间中的偏转
【例题3】某离子加速偏转实验装置部分的示意图如图所示,z轴正方向垂直于平面向外。粒子在加速器内经电压加速后,在(,,)点沿x轴正方向进入I区域,该区域沿x轴方向的宽度为,区域内存在沿y轴正方向的匀强电场,电场强度大小。粒子经偏转后进入II区域,该区域沿x轴方向的宽度为,内部某圆形区域存在沿z轴正方向的匀强磁场,磁感应强度大小为。粒子经过II区域的磁场后速度方向偏转,再进入III区域,该区域存在沿x轴正方向的匀强磁场,磁感应强度大小为,粒子离开III区域时速度方向平行于平面,且与z轴负方向成角。已知粒子的电荷量为、质量为,不计粒子重力。求:
(1)粒子在I区域内沿y轴方向的侧移量;
(2)II区域内圆形磁场区域的最小面积;
(3)III场区沿x轴方向的可能宽度。
【例题4】如图所示,在空间直角坐标系中,平面左侧存在沿z轴正方向的匀强磁场,右侧存在沿y轴正方向的匀强磁场,左、右两侧磁场的磁感应强度大小相等;平面右侧还有沿y轴负方向的匀强电场。现从空间中坐标为的M点发射一质量为m,电荷量为的粒子,粒子的初速度大小为、方向沿平面,与x轴正方向的夹角为;经一段时间后粒子恰好垂直于y轴进入平面右侧。其中电场强度和磁感应强度大小未知,其关系满足,不计粒子的重力。求:
(1)在平面左侧匀强磁场中做匀速圆周运动的轨道半径;
(2)粒子第2次经过平面时的速度大小;
(3)粒子第2次经过平面时的位置坐标;
(4)粒子第2、第3两次经过y0z平面的位置间的距离。
三.名校金题练素养
1.(2024·陕西铜川·模拟预测)利用电磁控制带电粒子的运动轨迹在现代实验和设备中得到广泛应用。如图所示,空间内有正立方体abcd-efgh区域,正方体区域内存在着方向沿ae向下的匀强磁场,磁感应强度大小为B,一带电粒子从a点沿ab方向以速度进入空间,粒子恰好通过c点;第一次撤去磁场,正方体内加上竖直向下的匀强电场,粒子仍从a点以原速度进入电场,粒子恰好通过f点;第二次恢复原磁场,同时换上竖直向下的匀强电场,粒子仍从a点以原速度进入场区,粒子恰好通过g点,不计粒子重力,正方体外无电场和磁场,下列说法正确的是( )
A.电场强度大小为B.粒子从a点到c点时间是从a点到f点时间的倍
C.电场强度大小为D.到达g点时速度大小为
2.(2024·甘肃平凉·模拟预测)如图所示,在空间直角坐标系中,yOz平面右侧存在沿z轴负方向的匀强磁场,左侧存在沿y轴正方向的匀强磁场,左、右两侧磁场的磁感应强度大小相等;yOz平面左侧还有沿y轴负方向的匀强电场。现从空间中坐标为(d,0,0)的P点发射一质量为m,电荷量为+q(q>0)的粒子,粒子的速度方向沿xOy平面且与y轴正方向相同;经时间t后粒子恰好垂直于y轴进入yOz平面左侧,粒子从z轴上某点返回yOz平面右侧,不计粒子的重力。求:
(1)匀强磁场的磁感应强度B的大小;
(2)匀强电场的电场强度E的大小;
(3)粒子返回yOz平面右侧时的速度v的大小。
3.(2024·湖北武汉·模拟预测)如图所示,在空间直角坐标系中,平面左侧存在沿z轴正方向的匀强磁场,右侧存在沿y轴正方向的匀强磁场,左、右两侧磁场的磁感应强度大小相等;平面右侧还有沿y轴负方向的匀强电场。现从空间中坐标为的M点发射一质量为m,电荷量为的粒子,粒子的初速度大小为、方向沿平面,与x轴正方向的夹角为;经一段时间后粒子恰好垂直于y轴进入平面右侧,轨迹上离平面最远的点恰好落在平面上,不计粒子的重力。求:
(1)在平面左侧匀强磁场的磁感应强度B;
(2)在平面右侧匀强电场的电场强度E;
(3)粒子第2次经过平面时的位置坐标。
4.(2024·黑龙江哈尔滨·一模)如图所示,离子加速后沿水平方向进入速度选择器,然后通过磁分析器,选择出特定比荷的离子;经偏转系统后到达水平面。图中匀强磁场的磁感应强度大小均为B,方向垂直于纸面向外;匀强电场的电场强度大小均为E。磁分析器截面四分之一圆弧的半径分别为L和3L,M和N为两端中心小孔;偏转系统中电场分布在棱长为L的正方体内,底面与水平面平行且间距为L。当偏转系统不加垂直纸面向外的电场时,质量为m的离子恰好竖直到达水平面内的О点(x轴正方向垂直纸面向外,y轴正方向水平向左)。整个系统置于真空中,不计离子重力及离子间的相互作用。求:
(1)通过磁分析器的离子电性及比荷;
(2)离子通过正方体底面到达水平面的位置坐标。
5.(2024·天津·一模)在芯片制造过程中,离子注入是其中一道重要的工序。如图所示是离子注入工作原理示意图,离子经加速后沿水平方向进入速度选择器,然后通过磁分析器,选择出特定比荷的离子,经偏转系统后注入处在水平面内的晶圆(硅片)。速度选择器、磁分析器和偏转系统中的匀强磁场的磁感应强度大小均为B,方向均垂直于纸面向外;速度选择器和偏转系统中的匀强电场的电场强度大小均为E,方向分别为竖直向上和垂直于纸面向外。磁分析器截面是内外半径分别为和的四分之一圆环,其两端中心位置M和N处各有一个小孔;偏转系统中电场和磁场的分布区域是棱长为L的正方体,其底面与晶圆所在水平面平行,间距也为L。当偏转系统不加电场及磁场时,离子恰好竖直注入到晶圆上的O点(即图中坐标原点,x轴垂直纸面向外)。整个系统置于真空中,不计离子重力及离子间的相互作用,打在晶圆上的离子,经过电场和磁场偏转的角度都很小。当很小时,有,。求:
(1)通过磁分析器选择出来的离子的比荷;
(2)偏转系统仅加电场时,离子在穿越偏转系统中沿电场方向偏转的距离;
(3)偏转系统仅加磁场时,离子注入晶圆的位置坐标(用长度、及L表示)。
6.(2024·广东广州·三模)在三维坐标系中长方体所在区域内存在匀强磁场,平面mnij左侧磁场方向垂直于平面adjm,平面mnij右侧磁场由m指向i方向,其中、大小均未知。现有电量为、质量为m的带电粒子以初速度v从a点沿平面adjm进入左侧磁场,经j点垂直平面mnij进入右侧磁场,最后离开长方体区域。已知长方体侧面abcd为边长L的正方形,其余边长如图中所示,,,不计粒子重力。
(1)求磁感应强度及粒子从a点运动到j点时间t;
(2)若粒子从边离开磁场,求的大小范围;
(3)若平面mnij可右侧空间磁场换成由j指向n方向且电场强度E大小可变的匀强电场(电场图中未画出,其余条件不变),求粒子离开长方体区域时动能与电场强度E大小的关系式。
7.(2024·湖南·模拟预测)自由电子激光器是以自由电子束为工作物质,将相对论性电子束的动能转变成相干的电磁辐射能的装置,其中产生电磁波的核心装置为“扭摆器”(如图所示),由沿z方向交错周期排列的2n对宽度为a的永磁体组成(,2a被称为扭摆器的“空间周期”),产生x方向的周期静磁场。本题我们利用高中知识,在被简化的模型中分析注入扭摆器的电子的运动。已知电子质量为m,带电荷-e,一束电子经加速后由弯曲磁体沿yOz平面引入扭摆器,不考虑引入过程速度损失,不考虑任何相对论效应,忽略电磁辐射过程的动能损耗。
(1)假设一对永磁体间的磁感应强度恒定为,电子束中电子进入扭摆器的初速度与z轴夹角为30°,且能经过扭摆器后被完整收集,求:
①电子束加速器的加速电压U;
②该电子束中的一个电子在扭摆器中的运动时间T。
(2)实际上,扭摆器的一个空间周期内,磁感应强度的大小是有变化的,一对永磁体间沿x轴的磁感应强度随与该对永磁体最左边的水平距离d近似满足的线性关系(,的方向由N极指向S极),电子束经电压加速后沿z轴正方向进入扭摆器,仍然能经过扭摆器后被完整收集,求电子运动过程偏离z轴的最大距离。
(提示:①实验中,可认为是相当弱的磁场;②可能用到的数学公式:时,)
8.(2024·天津北辰·三模)如图所示,空间有一棱长为L的正方体区域,带电粒子从平行于MF棱且与MPQF共面的线状粒子源连续不断地逸出,逸出粒子的初速度可视为0,粒子质量为m,电荷量为,经垂直于MF棱的水平电场加速后,粒子以一定的水平初速度从MS段垂直进入正方体区域内,MS段长为,该区域内有垂直平面MPRG向外的匀强磁场,磁感应强度大小为B,从M点射入的粒子恰好从R点射出。忽略粒子间的相互作用,不计粒子重力。
(1)求线状粒子源处与正方体MS段之间的电势差;
(2)若该区域内只有垂直平面MPRG向外的匀强电场,电场强度大小为,已知从S点射入的粒子从QP边上的某点射出,求该点距Q点的距离;
(3)若该区域内同时存在上述磁场与电场,通过计算判断从S点进入的粒子,离开该区域时的位置和速度大小。
9.(2024·广西·模拟预测)现代科学研究中,经常用磁场约束带电粒子的运动轨迹。如图所示,有一棱长为的正方体电磁区域,以棱中点为坐标原点建立三维坐标系,正方体区域内充满沿轴负方向的匀强磁场,在点有一粒子源,沿轴正方向发射不同速率的带电粒子,粒子质量均为,电荷量均为。已知速度大小为的粒子,恰从坐标(,,0)点飞出(图中未标出),不计粒子的重力。求
(1)磁感应强度大小;
(2)从正方体上表面飞出的速率范围;
(3)若从点射入的粒子初速度与轴正方向、轴负方向均成,大小为,求粒子射出区域时的坐标。
四.真题练习察动向
1.(2022·重庆·高考真题)2021年中国全超导托卡马克核聚变实验装置创造了新的纪录。为粗略了解等离子体在托卡马克环形真空室内的运动状况,某同学将一小段真空室内的电场和磁场理想化为方向均水平向右的匀强电场和匀强磁场(如图),电场强度大小为E,磁感应强度大小为B。若某电荷量为q的正离子在此电场和磁场中运动,其速度平行于磁场方向的分量大小为v1,垂直于磁场方向的分量大小为v2,不计离子重力,则( )
A.电场力的瞬时功率为B.该离子受到的洛伦兹力大小为qv1B
C.v2与v1的比值不断变大D.该离子的加速度大小不变
2.(2024·北京·高考真题)我国“天宫”空间站采用霍尔推进器控制姿态和修正轨道。图为某种霍尔推进器的放电室(两个半径接近的同轴圆筒间的区域)的示意图。放电室的左、右两端分别为阳极和阴极,间距为d。阴极发射电子,一部分电子进入放电室,另一部分未进入。稳定运行时,可视为放电室内有方向沿轴向向右的匀强电场和匀强磁场,电场强度和磁感应强度大小分别为E和;还有方向沿半径向外的径向磁场,大小处处相等。放电室内的大量电子可视为处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动(如截面图所示),可与左端注入的氙原子碰撞并使其电离。每个氙离子的质量为M、电荷量为,初速度近似为零。氙离子经过电场加速,最终从放电室右端喷出,与阴极发射的未进入放电室的电子刚好完全中和。
已知电子的质量为m、电荷量为;对于氙离子,仅考虑电场的作用。
(1)求氙离子在放电室内运动的加速度大小a;
(2)求径向磁场的磁感应强度大小;
(3)设被电离的氙原子数和进入放电室的电子数之比为常数k,单位时间内阴极发射的电子总数为n,求此霍尔推进器获得的推力大小F。
3.(2024·湖南·高考真题)如图,有一内半径为2r、长为L的圆筒,左右端面圆心O′、O处各开有一小孔。以O为坐标原点,取O′O方向为x轴正方向建立xyz坐标系。在筒内x ≤ 0区域有一匀强磁场,磁感应强度大小为B,方向沿x轴正方向;筒外x ≥ 0区域有一匀强电场,场强大小为E,方向沿y轴正方向。一电子枪在O′处向圆筒内多个方向发射电子,电子初速度方向均在xOy平面内,且在x轴正方向的分速度大小均为v0。已知电子的质量为m、电量为e,设电子始终未与筒壁碰撞,不计电子之间的相互作用及电子的重力。
(1)若所有电子均能经过O进入电场,求磁感应强度B的最小值;
(2)取(1)问中最小的磁感应强度B,若进入磁场中电子的速度方向与x轴正方向最大夹角为θ,求tanθ的绝对值;
(3)取(1)问中最小的磁感应强度B,求电子在电场中运动时y轴正方向的最大位移。
4.(2022·山东·高考真题)中国“人造太阳”在核聚变实验方面取得新突破,该装置中用电磁场约束和加速高能离子,其部分电磁场简化模型如图所示,在三维坐标系中,空间内充满匀强磁场I,磁感应强度大小为B,方向沿x轴正方向;,的空间内充满匀强磁场II,磁感应强度大小为,方向平行于平面,与x轴正方向夹角为;,的空间内充满沿y轴负方向的匀强电场。质量为m、带电量为的离子甲,从平面第三象限内距轴为的点以一定速度出射,速度方向与轴正方向夹角为,在平面内运动一段时间后,经坐标原点沿轴正方向进入磁场I。不计离子重力。
(1)当离子甲从点出射速度为时,求电场强度的大小;
(2)若使离子甲进入磁场后始终在磁场中运动,求进入磁场时的最大速度;
(3)离子甲以的速度从点沿轴正方向第一次穿过面进入磁场I,求第四次穿过平面的位置坐标(用d表示);
(4)当离子甲以的速度从点进入磁场I时,质量为、带电量为的离子乙,也从点沿轴正方向以相同的动能同时进入磁场I,求两离子进入磁场后,到达它们运动轨迹第一个交点的时间差(忽略离子间相互作用)。
5.(2023·天津·高考真题)科学研究中可以用电场和磁场实现电信号放大,某信号放大装置示意如图,其主要由阴极、中间电极(电极1,电极2, …,电极n)和阳极构成,该装置处于匀强磁场中,各相邻电极存在电势差。由阴极发射的电子射入电极1,激发出更多的电子射入电极2,依此类推,电子数逐级增加,最终被阳极收集,实现电信号放大。图中所有中间电极均沿x轴放置在xOz平面内,磁场平行于z轴,磁感应强度的大小为B。已知电子质量为m,电荷量为e。忽略电子间的相互作用力,不计重力。
(1)若电极间电势差很小可忽略,从电极1上O点激发出多个电子,它们的初速度方向与y轴的正方向夹角均为,其中电子a、b的初速度分别处于xOy 、yOz平面的第一象限内,并都能运动到电极2。
(i)试判断磁场方向;
(ii)分别求出a和b到达电极2所用的时间和;
(2)若单位时间内由阴极发射的电子数保持稳定,阴极、中间电极发出的电子全部到达下一相邻电极。设每个射入中间电极的电子在该电极上激发出个电子, ,U为相邻电极间电势差。试定性画出阳极收集电子而形成的电流I和U关系的图像,并说明理由
6.(2023·浙江·高考真题)利用磁场实现离子偏转是科学仪器中广泛应用的技术。如图所示,Oxy平面(纸面)的第一象限内有足够长且宽度均为L、边界均平行x轴的区域Ⅰ和Ⅱ,其中区域Ⅰ存在磁感应强度大小为B1的匀强磁场,区域Ⅱ存在磁感应强度大小为B2的磁场,方向均垂直纸面向里,区域Ⅱ的下边界与x轴重合。位于处的离子源能释放出质量为m、电荷量为q、速度方向与x轴夹角为60°的正离子束,沿纸面射向磁场区域。不计离子的重力及离子间的相互作用,并忽略磁场的边界效应。
(1)求离子不进入区域Ⅱ的最大速度v1及其在磁场中的运动时间t;
(2)若,求能到达处的离子的最小速度v2;
(3)若,且离子源射出的离子数按速度大小均匀地分布在范围,求进入第四象限的离子数与总离子数之比η。
7.(2022·天津·高考真题)直流电磁泵是利用安培力推动导电液体运动的一种设备,可用图1所示的模型讨论其原理,图2为图1的正视图。将两块相同的矩形导电平板竖直正对固定在长方体绝缘容器中,平板与容器等宽,两板间距为,容器中装有导电液体,平板底端与容器底部留有高度可忽略的空隙,导电液体仅能从空隙进入两板间。初始时两板间接有直流电源,电源极性如图所示。若想实现两板间液面上升,可在两板间加垂直于面的匀强磁场,磁感应强度的大小为,两板间液面上升时两板外的液面高度变化可忽略不计。已知导电液体的密度为、电阻率为,重力加速度为。
(1)试判断所加磁场的方向;
(2)求两板间液面稳定在初始液面高度2倍时的电压;
(3)假定平板与容器足够高,求电压满足什么条件时两板间液面能够持续上升。
相关试卷
这是一份第51讲 习题课----带电粒子在立体空间运动问题(解析版)-2025年高考物理一轮复习讲练测(新教材新高考),共39页。
这是一份第50讲 带电粒子在叠加场中的运动(讲义)(原卷版)-2025年高考物理一轮复习讲练测(新教材新高考),共10页。
这是一份第47讲 带电粒子在磁场中的运动(练习)(原卷版)-2025年高考物理一轮复习讲练测(新教材新高考),共12页。