河南省郑州市2024-2025学年八年级上学期11月期中数学试题(无答案)
展开这是一份河南省郑州市2024-2025学年八年级上学期11月期中数学试题(无答案),共5页。试卷主要包含了如图,,则的度数是,下列各式计算正确的是等内容,欢迎下载使用。
1.本试卷共8页,三个大题,满分120分,考试时间100分钟.请用蓝、黑色水笔或圆珠笔直接答在试卷上.
2.答卷前请将密封线内的项目填写清楚.
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.
1.下列长度的三条线段可以组成三角形的是( )
A.1,2,4B.5,6,11C.3,3,3D.4,8,12
2.随着人们物质生活的提高,玩手机成为一种生活中不可缺少的东西,手机很方便携带,但唯一的缺点就是没有固定的支点.为了解决这一问题,某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的哪一个性质( )
A.三角形两边之和大于第三边B.三角形具有稳定性
C.三角形的内角和是D.直角三角形两个锐角互余
3.如图,,则的度数是( )
A.B.C.D.
4.如图,两个三角形为全等三角形,则∠1=( )
A.B.C.D.
5.如图所示,AP平分,点M,N分别在边AB,AC上,如果添加一个条件,即可推出AM,那么下面条件不正确的是( )
A.B.C.D.
6.如图所示,在四边形ABCD中,边AB与AD关于AC对称,则下面结论错误的是( )
A.AC平分B.C.CA平分D.BD平分AC
7.下列各式计算正确的是( )
A.B.
C.D.
8.如果,那么用含m的代数式表示n为( )
A.B.C.D.
9.如图,麦麦用9张A类正方形卡片、1张类正方形卡片和6张类长方形卡片,拼成了一个大正方形,拼成的大正方形的边长是( )
A.B.C.D.
10.如图,在中,,点从点出发以每秒2cm的速度向点运动,点从点出发以每秒1.6cm的速度向点运动,其中一个动点到达终点时,另一个动点也随之停止运动,当是以MN为底的等腰三角形时,则这时等腰三角形的腰长是( )
A.5cmB.6cmC.7cmD.8cm
二、填空题.(每小题3分,共15分)
11.若点关于轴的对称点在第一象限,则的取值范围是______________.
12.一个正多边形的周长是18,每个外角都是,则这个正多边形的边长是______________.
13.已知,则______________.
14.如图,在中,是线段AC的垂直平分线,连接AE,若,则用含有a,b的代数式表示的周长是______________.
15.阅读理解:引入新数,新数满足交换律,结合律,分配律,已知,那么______________.
三、解答题.(本大题共8个小题,满分75分)
16.(8分)计算:(1)
(2)
17.(9分)先化简,再求值:,其中满足.
18.(9分)如图,在等边中,,点在AB上,且,点是BC上一动点,连接ED,将线段DE绕点逆时针旋转,得到线段DF,要使点恰好落在AC上,则BE的长是多少?
19.(9分)如图,在平面直角坐标系中.
(1)作出关于y轴对称的,并写出三个顶点坐标:___________,___________,___________;
(2)___________;
(3)在轴上找到点,使最小.
20.(9分)如图,点E在线段BD上,已知
(1)求证:
(2)写出∠1、∠2、∠3之间的数量关系,并予以证明.
21.(10分)如图,已知AM,AN分别是的高和中线,.试求:
(1)AM的长;
(2)的面积;
(3)和的周长差.
22.(10分)观察等式
观察下列是关于自然数的式子:
应用上述规律解决下列问题:
发现规律
(1)完成第四个等式:_____________=_____________;
验证结论
(2)猜想第个等式并写出来(用含的式子表示),验证其正确性.
23.(11分)如图,在中,,点在AC上,且.若为线段AC上的点,过作直线于点,分别交直线于点
(1)求证:是等腰三角形.
(2)猜想并写出线段之间的数量关系,并加以证明你的猜想.
相关试卷
这是一份河南省郑州市2024-2025学年九年级上学期11月期中数学试题(无答案),共6页。
这是一份河南省郑州市第八十六中学2024-2025学年八年级上学期期中考试数学试题(无答案),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省郑州市桐柏一中2024-2025学年八年级上学期期中考试数学试题(无答案),共8页。试卷主要包含了本试卷分第I卷,满分120分,考试时间,将第I卷的答案代表字母填,已知一次函数,下列说法正确的是等内容,欢迎下载使用。