所属成套资源:【备战2025】2025年高考数学一轮复习核心题型精讲讲练(新高考版)
- 考点01 集合(4种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版) 试卷 0 次下载
- 考点02 常用逻辑用语(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版) 试卷 0 次下载
- 考点04 基本不等式(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版) 试卷 1 次下载
- 考点05 一元二次方程、不等式(2种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版) 试卷 0 次下载
- 考点06 函数的概念及其表示(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版) 试卷 0 次下载
考点03 等式性质与不等式性质(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版)
展开
这是一份考点03 等式性质与不等式性质(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版),文件包含考点03等式性质与不等式性质3种核心题型+基础保分练+综合提升练+拓展冲刺练原卷版docx、考点03等式性质与不等式性质3种核心题型+基础保分练+综合提升练+拓展冲刺练解析版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
掌握等式性质.2.会比较两个数的大小.3.理解不等式的性质,并能简单应用.
【知识点】
1.两个实数比较大小的方法
作差法eq \b\lc\{\rc\ (\a\vs4\al\c1(a-b>0⇔a>b,,a-b=0⇔a=b,,a-bc⇒a>c;
性质3 可加性:a>b⇔a+c>b+c;
性质4 可乘性:a>b,c>0⇒ac>bc;a>b,cd⇒a+c>b+d;
性质6 同向同正可乘性:a>b>0,c>d>0⇒ac>bd;
性质7 同正可乘方性:a>b>0⇒an>bn(n∈N,n≥2).
常用结论
1.若ab>0,且a>b⇔eq \f(1,a)b>0,m>0⇒eq \f(b,a)a>0,m>0⇒eq \f(b,a)>eq \f(b+m,a+m).
【核心题型】
题型一 数(式)的大小比较
比较大小的常用方法
(1)作差法:①作差;②变形;③定号;④得出结论.
(2)作商法:①作商;②变形;③判断商与1的大小关系;④得出结论.
(3)构造函数,利用函数的单调性比较大小.
【例题1】(1)已知M=eq \f(e2 021+1,e2 022+1),N=eq \f(e2 022+1,e2 023+1),则M,N的大小关系为________.
【答案】M>N
【解析】方法一 M-N=eq \f(e2 021+1,e2 022+1)-eq \f(e2 022+1,e2 023+1)
=eq \f(e2 021+1e2 023+1-e2 022+12,e2 022+1e2 023+1)
=eq \f(e2 021+e2 023-2e2 022,e2 022+1e2 023+1)
=eq \f(e2 021e-12,e2 022+1e2 023+1)>0.
∴M>N.
方法二 令f(x)=eq \f(ex+1,ex+1+1)
=eq \f(\f(1,e)ex+1+1+1-\f(1,e),ex+1+1)=eq \f(1,e)+eq \f(1-\f(1,e),ex+1+1),
显然f(x)是R上的减函数,
∴f(2 021)>f(2 022),即M>N.
(2)若a>b>1 ,P=aeb,Q=bea,则P,Q的大小关系是( )
A.P>Q B.P=Q
C.P1时,f′(x)>0 ,所以f(x)=eq \f(ex,x)在(1,+∞)上单调递增,
因为a>b>1,所以eq \f(eb,b)0,eq \f(ea,a)>0,所以eq \f(P,Q)=eq \f(\f(eb,b),\f(ea,a))b=2>c=1>0,则a(b-c)=3b>c>0可知,a-c>b-c>0,
∴eq \f(1,a-c)(b-c)3,故C错误,D正确.
【变式2】(多选)若a>0>b>-a,cb(d-c)
【答案】BCD
【解析】因为a>0>b,c-b>0,因为c0,所以a(-c)>(-b)(-d),所以ac+bd0,所以eq \f(ac+bd,cd)=eq \f(a,d)+eq \f(b,c)b,所以a+(-c)>b+(-d),即a-c>b-d,故C正确;
因为a>0>b,d-c>0,所以a(d-c)>b(d-c),故D正确.
【变式3】(多选)设a,b,c,d为实数,且a>b>0>c>d,则下列不等式正确的有( )
A.c20>c>d,
所以a>b>0,0>c>d,
对于A,因为0>c>d,由不等式的性质可得c2b>0,db>c,且a+b+c=0,那么eq \f(c,a)的取值范围是________.
【答案】-2c,且a+b+c=0,
所以a>0,c-2,
-a-c>c,-a>2c,eq \f(c,a)
相关试卷
这是一份考点15 函数模型的应用(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版),文件包含考点15函数模型的应用3种核心题型+基础保分练+综合提升练+拓展冲刺练原卷版docx、考点15函数模型的应用3种核心题型+基础保分练+综合提升练+拓展冲刺练解析版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。
这是一份考点13 函数的图像(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版),文件包含考点13函数的图像3种核心题型+基础保分练+综合提升练+拓展冲刺练原卷版docx、考点13函数的图像3种核心题型+基础保分练+综合提升练+拓展冲刺练解析版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。
这是一份考点12 对数与对数函数(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版),文件包含考点12对数与对数函数3种核心题型+基础保分练+综合提升练+拓展冲刺练原卷版docx、考点12对数与对数函数3种核心题型+基础保分练+综合提升练+拓展冲刺练解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。