所属成套资源:【备考2025高考】高考二轮复习物理模型与方法热点题型归类(含答案解析)
专题09 圆周运动常考模型-2025高考物理模型与方法热点题型归类训练
展开这是一份专题09 圆周运动常考模型-2025高考物理模型与方法热点题型归类训练,文件包含专题09圆周运动常考模型原卷版docx、专题09圆周运动常考模型解析版docx等2份试卷配套教学资源,其中试卷共103页, 欢迎下载使用。
TOC \ "1-3" \h \u \l "_Tc5577" 题型一 圆周运动中的运动学分析 PAGEREF _Tc5577 \h 1
\l "_Tc28547" 题型二 水平面内的圆周运动 PAGEREF _Tc28547 \h 7
\l "_Tc23060" 类型1 圆锥摆模型 PAGEREF _Tc23060 \h 8
\l "_Tc27795" 类型2 生活中的圆周运动 PAGEREF _Tc27795 \h 14
\l "_Tc21042" 题型三 圆周运动中的临界极值问题 PAGEREF _Tc21042 \h 18
\l "_Tc20208" 类型1 水平面内圆周运动的临界问题 PAGEREF _Tc20208 \h 18
\l "_Tc277" 类型2 竖直面内的圆周运动的临界问题 PAGEREF _Tc277 \h 26
\l "_Tc7670" 类型3 斜面上圆周运动的临界问题 PAGEREF _Tc7670 \h 38
\l "_Tc26647" 题型四 圆周运动与图像结合问题 PAGEREF _Tc26647 \h 46
\l "_Tc14168" 类型1 水平面内圆周运动与图像结合问题 PAGEREF _Tc14168 \h 46
\l "_Tc20690" 类型2 竖直面内圆周运动与图像结合 PAGEREF _Tc20690 \h 49
题型一 圆周运动中的运动学分析
【解题指导】1.对公式v=ωr的理解
当ω一定时,v与r成正比.
当v一定时,ω与r成反比.
2.对an=eq \f(v2,r)=ω2r的理解
在v一定时,an与r成反比;在ω一定时,an与r成正比.
3.常见的传动方式及特点
(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即vA=vB.
(2)摩擦传动和齿轮传动:如图甲、乙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即vA=vB.
(3)同轴转动:如图所示,绕同一转轴转动的物体,角速度相同,ωA=ωB,由v=ωr知v与r成正比.
【例1】(2024·辽宁·高考真题)“指尖转球”是花式篮球表演中常见的技巧。如图,当篮球在指尖上绕轴转动时,球面上P、Q两点做圆周运动的( )
A.半径相等B.线速度大小相等
C.向心加速度大小相等D.角速度大小相等
【例2】(2024·甘肃酒泉·三模)如图所示为脚踏自行车的传动装置简化图,各轮的转轴均固定且相互平行,甲、乙两轮同轴且无相对转动,已知甲、乙、丙三轮的半径之比为1:9:3,传动链条在各轮转动中不打滑,则乙、丙转速之比为( )
A.1:2B.2:1C.3:1D.1:3
【变式演练1】(2024·四川成都·三模)一质点做匀速圆周运动,从圆周上的一点运动到另一点的过程中,下列说法一定正确的是( )
A.质点速度不变B.质点加速度不变C.质点动能不变D.质点机械能不变
【变式演练2】进入冬季后,北方的冰雪运动吸引了许多南方游客。如图为雪地转转游戏,人乘坐雪圈(人和雪圈总质量为50kg,大小忽略不计)绕轴以2rad/s的角速度在水平雪地上匀速转动,已知水平杆长为2m,离地高为2m,绳长为4m,且绳与水平杆垂直。则雪圈(含人)( )
A.所受的合外力不变B.所受绳子的拉力指向圆周运动的圆心
C.线速度大小为8m/sD.所需向心力大小为400N
【变式演练3】某款滚筒洗衣机的内筒直径为50cm,在进行衣服脱水甩干时转速可达到1200转/分,则甩干时紧贴滚筒内壁衣服的线速度大小约为( )
A.31m/sB.63m/sC.126m/sD.600m/s
【变式演练4】如图为古代常见的一种板车,车前轮与后轮转动半径之比为,车上放有质量为m的重物(可视为质点),推动板车使重物恰好能够随车匀速前进,此时车板与水平面间的倾角为,重物与车板间动摩擦因数固定,若将车板与水平面间倾角变大,之后控制板车使其仍能水平匀速前行,则下列说法正确的是( )
A.板车前轮与后轮的角速度之比为
B.重物与板车间动摩擦因数
C.板车倾角变大后重物所受摩擦力也会随之变大
D.板车倾角变大后重物的对地运动方向沿板车斜面向下
【变式演练5】如图所示为某自行车的大齿轮、小齿轮和后轮结构示意图,它们的边缘有三个点a、b、c,半径大小关系为,下列判断正确的是( )
A.b比a的角速度小B.b和c的角速度相等
C.a比b的向心加速度大D.c比b的向心加速度大
【变式演练6】齿轮传动是现代工业中常见的一种动力传动方式,荷兰设计师丹尼尔·布朗设计了世上最强齿轮——古戈尔齿轮。如图,最左侧小齿轮转动就会带动后面的大齿轮转动,古戈尔齿轮中有100个大齿轮,小齿轮与大齿轮的半径之比为1∶10,若第一个小齿轮的转动周期为1s,由图可知要使古戈尔齿轮中最后一个大齿轮转动一圈,需要的时间为( )
A.B.C.D.
题型二 水平面内的圆周运动
【解题指导】1.向心力的来源
向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.
2.向心力的确定
(1)确定圆周运动的轨道所在的平面,确定圆心的位置.
(2)分析物体的受力情况,所有的力沿半径方向指向圆心的合力就是向心力.
3.几种典型运动模型
4方法技巧:求解圆周运动问题必须进行的三类分析,
类型1 圆锥摆模型
1.如图所示,向心力F向=mgtan θ=meq \f(v2,r)=mω2r,且r=Lsin θ,解得v=eq \r(gLtan θsin θ),ω=eq \r(\f(g,Lcs θ)).
2.稳定状态下,θ角越大,对应的角速度ω和线速度v就越大,小球受到的拉力F=eq \f(mg,cs θ)和运动所需向心力也越大.
【例1】(2024·江苏·高考真题)如图所示,细绳穿过竖直的管子拴住一个小球,让小球在A高度处作水平面内的匀速圆周运动,现用力将细绳缓慢下拉,使小球在B高度处作水平面内的匀速圆周运动,不计一切摩擦,则( )
A.线速度vA > vBB.角速度ωA < ωB
C.向心加速度aA < aBD.向心力FA > FB
【变式演练1】如图所示,质量为m的小球用长为l的细线悬于P点,使小球在水平面内以角速度做匀速圆周运动。已知小球做圆周运动时圆心O到悬点P的距离为h,重力加速度为g。下列说法正确的是( )
A.绳对小球的拉力大小为
B.小球转动一周,绳对小球拉力的冲量为0
C.保持h不变,增大绳长l,增大
D.保持h不变,增大绳长l,绳对小球拉力的大小不变
【变式演练2】.一个单摆在竖直平面内摆动(摆角较小),摆球运动到最高点时对细线的拉力大小为、摆动的周期为;保持摆长不变,让该小球在水平面内做圆锥摆运动,摆线偏离竖直方向的夹角也为,运动过程中摆球对细线的拉力大小为,摆动的周期为。则( )
A.B.
C.D.
【变式演练3】.摩托车特技表演中的飞檐走壁让人震撼,其运动可简化为如图所示的小球在光滑的半球形容器内做圆周运动。小球的质量为m,容器的球心为O、半径为R,小球在水平面内做圆周运动,运动到a点时,Oa与竖直方向夹角为θ,运动过程中容器静止在水平地面上。半球形容器及底座的质量为M,重力加速度为g,则下列说法正确的是( )
A.小球运动的角速度大小为
B.小球运动的线速度大小为
C.底座受到地面的摩擦力大小为
D.底座对地面的压力大于
【变式演练4】如图所示,两根轻细线上端固定在S点,下端分别连一小铁球A、B,使两者恰好在同一水平面内做匀速圆周运动,SO的高度为H,不计空气阻力,下列说法中正确的是( )
A.小球做匀速圆周运动时,受到重力、细线拉力和向心力作用
B.如果两个小球的质量相等,则两条细线受到的拉力不相等
C.A、B做圆周运动的角速度均为
D.球A运动的周期小于球B运动的周期
类型2 生活中的圆周运动
【例2】(2024·山东烟台·三模)如图所示,MN为半径为r的圆弧路线,NP为长度19r的直线路线,为半径为4r的圆弧路线,为长度16r的直线路线。赛车从M点以最大安全速度通过圆弧路段后立即以最大加速度沿直线加速至最大速度vm并保持vm匀速行驶。已知赛车匀速转弯时径向最大静摩擦力和加速时的最大合外力均为车重的k倍,最大速度,g为重力加速度,赛车从M点按照MNP路线运动到P点与按照路线运动到点的时间差为( )
A.B.
C.D.
【变式演练1】如图所示为我国某平原地区从P市到Q市之间的高铁线路,线路上,,位置处的曲率半径分别为r,r、2r。若列车在P市到Q市之间匀速率运行,列车在经过,,位置处与铁轨都没有发生侧向挤压,三处铁轨平面与水平面间的夹角分别为、,。下列说法正确的是( )
A.列车依次通过3个位置的角速度之比为1:1:2
B.列车依次通过3个位置的向心加速度之比为1:1:2
C.3个位置的
D.3个位置的内外轨道的高度差之比为1:1:2
【变式演练2】如图所示,有一辆汽车在前挡风玻璃内悬挂了一个挂件。当汽车在水平公路上转弯时,司机发现挂件向右倾斜并且倾斜程度在缓慢减小,已知汽车的转弯半径一定,则下列说法正确的是( )
A.汽车正在向右加速转弯
B.汽车正在向右减速转弯
C.汽车正在向左加速转弯
D.汽车正在向左减速转弯
【变式演练3】.运球转身是运球中的一种基本方法,是篮球运动中重要进攻技术之一。拉球转身的动作是难点,例如图a所示为运动员为拉球转身的一瞬间,由于篮球规则规定手掌不能上翻,我们将此过程理想化为如图b所示的模型,薄长方体代表手掌,转身时球紧贴竖立的手掌,绕着转轴(中枢脚所在直线)做圆周运动,假设手掌和球之间的最大静摩擦因数为0.5,篮球质量为600克,直径24厘米,手到转轴的距离为0.5米,则要顺利完成此转身动作,篮球和手至少要有多大的速度( )
A.2.28m/sB.2.76m/s
C.3.16m/sD.3.52m/s
题型三 圆周运动中的临界极值问题
类型1 水平面内圆周运动的临界问题
三种临界情况
(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力FN=0.
(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是静摩擦力达到最大值.
(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是FT=0.
【例1】(2024·江苏·高考真题)陶瓷是以粘土为主要原料以及各种天然矿物经过粉碎混炼、成型和煅烧制得的材料以及各种制品。如图所示是生产陶磁的简化工作台,当陶瓷匀速转动时,台面面上掉有陶屑,陶屑与桌面间的动摩因数处处相同(台面够大),则( )
A.离轴OO´越远的陶屑质量越大
B. 离轴OO´越近的陶屑质量越小
C. 只有平台边缘有陶屑
D.离轴最远的陶屑距离不会超过某一值
【变式演练1】如图所示,天花板下通过两个支架固定一根细钢管,轻绳从钢管穿过后,在其两端分别挂质量为m1、m2的小球a、b(均可视为质点),两小球的质量之比为 ,钢管左端轻绳AB段长度为l=1m,当钢管一侧悬挂小球的轻绳上张力不小于另一侧张力的时,绳不会发生滑移,为使小球b保持静止状态,已知重力加速度大小为g,sin37°=0.6,cs37°=0.8,下列说法正确的是( )
A.若小球a也保持静止状态,则
B.若k=1,可将小球a拉至轻绳AB段与竖直方向成夹角53°无初速度释放
C.若可使小球a在水平面内做匀速圆周运动,其角速度范围为
D.若轻绳AB段与竖直方向的夹角为37°,可使小球a在水平面内做匀速圆周运动,则
【变式演练2】如图所示,竖直平面内的光滑金属细圆环半径为R,质量为m的带孔小球穿于环上,同时有一长为R的轻杆一端固定于球上,另一端通过光滑的铰链固定于圆环最低点,当圆环以角速度绕竖直直径转动时,轻杆对小球的作用力大小和方向为( )
A.沿杆向上B.沿杆向下
C.沿杆向上D.沿杆向下
【变式演练3】如图所示,水平圆台可以绕其中心轴转动。在圆台中心两侧放上甲、乙两物体,两物体的质量均为m,均可视为质点,甲、乙两物体到圆台中心距离分别为2R、R,其连线过圆台中心。两物体与圆台间的动摩擦因数均为μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g。
(1)若圆台以某一角速度转动时,甲、乙均未滑动。求两物体的加速度之比;
(2)若圆台的角速度逐渐增大,请分析说明甲、乙两物体谁先滑动;
(3)若将甲、乙两物体用不可伸长的轻绳连接,轻绳最初拉直而不张紧,缓慢增加圆台的转速,求两物体刚要滑动时圆台转动的角速度ω。
【变式演练4】.(2023·福建·高考真题)一种离心测速器的简化工作原理如图所示。细杆的一端固定在竖直转轴上的O点,并可随轴一起转动。杆上套有一轻质弹簧,弹簧一端固定于O点,另一端与套在杆上的圆环相连。当测速器稳定工作时,圆环将相对细杆静止,通过圆环的位置可以确定细杆匀速转动的角速度。已知细杆长度,杆与竖直转轴的夹角a始终为,弹簧原长,弹簧劲度系数,圆环质量;弹簧始终在弹性限度内,重力加速度大小取,摩擦力可忽略不计
(1)若细杆和圆环处于静止状态,求圆环到O点的距离;
(2)求弹簧处于原长时,细杆匀速转动的角速度大小;
(3)求圆环处于细杆末端P时,细杆匀速转动的角速度大小。
【变式演练5】如图所示,在水平圆盘上放置一个质量为的小滑块,滑块离圆盘中心。滑块与圆盘之间的动摩擦因数为0.1,现使圆盘绕垂直于盘面的中心轴缓慢加速转动,至小滑块与盘面发生相对滑动。设最大静摩擦力等于滑动摩擦力,重力加速度取,则( )
A.圆盘缓慢加速转动过程中,滑块所受的摩擦力做功为0
B.小滑块与盘面发生相对滑动时圆盘的角速度为
C.在小滑块上面再放置一个相同的小滑块,发生相对滑动时的角速度为
D.在小滑块上面再放置一个质量为的小滑块,两者之间的动摩擦因数为0.05,发生相对滑动时的角速度为
类型2 竖直面内的圆周运动的临界问题
1.两类模型对比
2.解题技巧
(1)物体通过圆周运动最低点、最高点时,利用合力提供向心力列牛顿第二定律方程;
(2)物体从某一位置到另一位置的过程中,用动能定理找出两处速度关系;
(3)注意:求对轨道的压力时,转换研究对象,先求物体所受支持力,再根据牛顿第三定律求出压力.
【例1】如图所示,一长为L的轻绳拉着质量为m的小球保持静止。现在给小球一个水平初速度,使小球在竖直面内做完整的圆周运动,不计空气阻力,重力加速度为g,则下列判断正确的是( )
A.小球在最高点的速度可以等于0
B.小球获得的初速度大小为
C.小球做圆周运动的过程中仅有一处合力指向圆心
D.小球过最低点与最高点时受到绳的拉力大小之差等于6mg
【例2】(2024·安徽蚌埠·三模)如图所示,长为的轻绳悬挂于O点,另一端连接质量为的小球,小球可视为质点。在点正下方的处固定一光滑小钉,将小球拉起使悬线呈水平绷紧状态后,无初速地释放,小球运动到最低点后绕点运动,不计空气阻力,重力加速度为.
(1)要使小球能以为圆心做完整的圆周运动,OC长度至少为多大?
(2)小球从A运动到B的过程中,当重力功率最大时,绳对小球的拉力为多大。
【例3】(2024·陕西咸阳·模拟预测)如图所示,长为0.1m的轻杆一端固定一小球质量为0.1kg的小球,小球绕圆心O在竖直面内做圆周运动。P是圆周上的最高点,重力加速度,下面说法正确的时( )
A.当小球运动到与O相平的水平位置时,杆对小球作用力为零
B.若小球经过P点时速度为1m/s,杆对小球作用力为零
C.若小球经过P点时杆对小球作用力等于0.36N,小球的速度一定等于0.8m/s
D.若小球经过Q点时杆对小球作用力等于5N,小球速度一定等于2m/s
【变式演练1】如图所示,在O点用长为L不可伸长的轻绳悬挂一质量为m的小球,O点正下方的P点固定一细钉子,OP距离为d,C点和P点等高。小球处于O点右侧同一水平高度的A点时,绳刚好拉直,将小球从A点由静止释放。不计空气阻力。下列说法正确的是( )
A.小球从A点运动B点的过程中,重力的功率逐渐变大
B.绳撞钉子前后,小球的角速度不变
C.d取某个值(不等于0)时,小球运动到C点的速度恰好为零
D.若时,小球不能绕钉子做圆周运动
【变式演练2】如图所示,粗糙的水平轨道和光滑的竖直圆轨道 ABCD 相切于A点,小滑块P静置在水平轨道上,现对P施加水平向右的恒力F使之由静止向右运动,到A点时撤去F。研究发现:当起点在M点左侧或N点右侧时,P进入圆轨道后不会脱离轨道。设MA与NA的比值为k,小滑块与水平轨道间的动摩擦因数为μ,则 ( )
A.μ越大,k越大B.μ越大,k越小
C.k=2D.k=
【变式演练3】(2024·河北·三模)如图所示,在竖直平面内有一固定光滑轨道,其中AB是长度为R的水平轨道,BCDE是圆心为O、半径为R的圆弧轨道,两轨道相切于B点。一可视为质点的小球从A点以某速度(大小未知)水平向左运动,重力加速度大小为g。下列说法正确的是( )
A.当时,小球刚好过最高点D点
B.当时,小球不会脱离圆弧轨道
C.若小球能通过E点,则越大,小球在B点与E点所受的弹力之差越大
D.小球从E点运动到A点的最长时间为
【变式演练4】如图所示,一轻绳系一质量为m小球,竖直悬挂在O点,现将小球沿圆弧拉至与O等高的A点,由静止自由释放。小球运动过程中经过C点时,绳与竖直方向的夹角为,以下判断正确的是( )
A.小球下摆到最低点的过程中,重力平均功率为0,细绳拉力一直增大
B.小球运动至C点时,其加速度大小为
C.小球运动至C点时,轻绳对小球的拉力大小为
D.若小球经过C点时重力功率最大,则
【变式演练5】.如图所示,被锁定在墙边的压缩弹簧右端与质量为0.2kg、静止于A点的滑块P接触但不粘连,滑块P所在光滑水平轨道与半径为0.8m的光滑半圆轨道平滑连接于B点,压缩的弹簧储存的弹性势能为2.8J,重力加速度取10m/s2,现将弹簧解除锁定,滑块P被弹簧弹出,脱离弹簧后冲上半圆轨道的过程中( )
A.可以到达半圆轨道最高点D
B.经过B点时对半圆轨道的压力大小为9N
C.不能到达最高点D,滑块P能到达的最大高度为1.35m
D.可以通过C点且在CD之间某位置脱离轨道,脱离时的速度大小为2.2m/s
【变式演练6】如图所示,长为L的杆一端固定在过O点的水平转轴上,另一端固定质量为m的小球。杆在电动机的驱动下在竖直平面内旋转,带动小球以角速度做匀速圆周运动,其中A点为最高点,C点为最低点,B、D点与O点等高。已知重力加速度为g,下列说法正确的是( )
A.小球在B、D两点受到杆的作用力大于mg
B.小球在A、C两点受到杆的作用力大小的差值为6mg
C.小球在B、D两点受到杆的作用力大小等于
D.小球从A点到B点的过程,杆对小球做的功等于
【变式演练7】如图半径为L的细圆管轨道竖直放置,管内壁光滑,管内有一个质量为m的小球做完整的圆周运动,圆管内径远小于轨道半径,小球直径略小于圆管内径,下列说法不正确的是( )
A.经过最低点时小球可能处于失重状态
B.经过最高点Z时小球可能处于完全失重状态
C.若小球能在圆管轨道做完整圆周运动,最高点Z的速度v最小值为0
D.若经过最高点Z的速度v增大,小球在Z点对管壁压力可能减小
【变式演练8】如图所示,竖直平面内固定有一个半径为R的光滑圆环形细管,现给小球(直径略小于管内径)一个初速度,使小球在管内做圆周运动,小球通过最高点时的速度为v。已知重力加速度为g,则下列叙述中正确的是( )
A.v的最小值为
B.当时,小球处于完全失重状态,不受力的作用
C.当时,轨道对小球的弹力方向竖直向下
D.当v由逐渐减小的过程中,轨道对小球的弹力也逐渐减小
类型3 斜面上圆周运动的临界问题
物体在斜面上做圆周运动时,设斜面的倾角为θ,重力垂直斜面的分力与物体受到的支持力相等,解决此类问题时,可以按以下操作,把问题简化.
【例1】如图所示,倾角为的斜面体固定在水平地面上,在斜面上固定一个半圆管轨道AEB,圆管的内壁光滑、半径为r,其最低点A、最高点B的切线水平,AB是半圆管轨道的直径,现让质量为m的小球(视为质点)从A点以一定的水平速度滑进圆管,圆管的内径略大于小球的直径、重力加速度为g,、,下列说法正确的是( )
A.当小球到达B点时受到沿斜面方向的弹力刚好为0,则小球在B点的速度为
B.小球离开B点做平抛运动的时间为
C.若小球在B点的加速度大小为2g,则A点对小球沿斜面方向的弹力大小为
D.若小球到达B点时受到沿斜面方向的弹力刚好为0,则小球的落地点与P点间的距离为
【变式演练1】如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度转动,盘面上离转轴距离2.5m处有一小物体与圆盘始终保持相对静止。物体与盘面间的动摩擦因数为,盘面与水平面的夹角为30°,g取。则的可能取值为( )
A.B.C.D.
【变式演练2】如图所示,在倾角为的足够大的固定斜面上,一长度为L的轻杆一端可绕斜面上的O点自由转动,另一端连着一质量为m的小球(视为质点)。现使小球从最低点A以速率v开始在斜面上做圆周运动,通过最高点B。重力加速度大小为g,轻杆与斜面平行,不计一切摩擦。下列说法正确的是( )
A.小球通过A点时所受轻杆的作用力大小为
B.小球通过B点时的最小速度为
C.小球通过A点时斜面对小球的支持力与小球的速度无关
D.若小球以的速率通过B点时突然脱落而离开轻杆,则小球到达与A点等高处时与A点间的距离为2L
【变式演练3】如图所示,在倾角为θ的光滑斜面上,有一长为l的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在斜面上做完整的圆周运动,则( )
A.小球通过最高点A时的速度
B.小球通过最高点A时的速度
C.小球通过最高点A时,细线对小球的拉力T=0
D.小球通过最高点A时,细线对小球的拉力T=mgsin θ
题型四 圆周运动与图像结合问题
类型1 水平面内圆周运动与图像结合问题
【例1】(2024·北京·一模)当做圆周运动的物体角速度ω变化时,我们可以引用角加速度β来描述角速度ω的变化快慢,即。图甲中某转盘自时由静止开始转动,其前4s内角加速度β随时间t变化如图乙所示。则( )
A.第4s末,转盘停止转动B.角加速度的变化率的单位为:rad/s
C.0~2s内转盘做匀角加速圆周运动D.第2s末,转盘的角速度大小为10rad/s
【例2】如图甲所示,将质量为M的物块A和质量为m的物块B放在水平转盘上,两者用长为L的水平轻绳连接,物块与转盘间的最大静摩擦力均为各自重力的k倍,物块A与转轴的距离等于轻绳长度,整个装置能绕通过转盘中心的竖直轴转动。开始时,轻绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,绳中张力与转动角速度的平方的关系如图乙所示,当角速度的平方超过时,物块A、B开始滑动。若图乙中的、及重力加速度均为已知,下列说法正确的是( )
A.B.C. D.
【变式演练1】如图甲所示,两个完全一样的小木块a和b(可视为质点)用轻绳连接置于水平圆盘上,a与转轴OO′的距离为l。圆盘从静止开始绕转轴极缓慢地加速转动,木块和圆盘保持相对静止。ω表示圆盘转动的角速度,a、b与圆盘保持相对静止的过程中所受摩擦力与ω2满足如图乙所示关系,图中f2= 3f1,下列判断正确的是( )
A.图线(1)对应物体bB.绳长为2l
C.D.ω = ω2时绳上张力大小为
【变式演练2】如图所示,相同的物块a、b用沿半径方向的细线相连放置在水平圆盘上.当圆盘绕转轴转动时,物块a、b始终相对圆盘静止.下列关于物块a所受的摩擦力随圆盘角速度的平方(ω2)的变化关系正确的是( )
A.B.
C.D.
【变式演练3】如图所示,长为L的细绳上端固定在天花板上,下端拴一个可视为质点的小球,小球在水平面内做匀速圆周运动。细绳跟竖直方向的夹角为θ,小球做匀速圆周运动的角速度为ω。当小球以不同的角速度ω做匀速圆周运动时,细绳与竖直方向的夹角θ随之变化,已知当地的重力加速度大小为g,下列关于θ与ω的关系图像可能正确的是( )
B.
C.D.
类型2 竖直面内圆周运动与图像结合
【解题指导】
1.清楚圆周运动中绳、杆模型的物理规律,列出正确的物理方程。
2.对一次函数y=kx+b要非常熟练,会用会画。
3.熟练地将数学和物理结合起来,用图像法来解决物理问题。
【数理思想与模型建构】
1.数理思想是基于物理现象的数学模型,利用数学知识解决物理问题的科学思维方法。
2.模型建构
(1)轻绳模型:①v>eq \r(gR)时绳子的弹力F=meq \f(v2,R)-mg,方向竖直向下
②v=eq \r(gR)时绳子的弹力为零,是安全通过最高点的临界条件
(2)轻杆模型
①v>eq \r(gR)时轻杆对物体的弹力F=meq \f(v2,R)-mg ,方向竖直向下
②v=eq \r(gR)时轻杆对物体的弹力为零,是物体所受弹力方向变化的临界速度。
③v<eq \r(gR)时轻杆对物体的弹力FN=mg-meq \f(v2,R),方向竖直向上。
【思维建构】
1.根据物理现象列出物理方程。
2.根据物理方程整理成函数关系。
3.将物理方程与一次函数相对应。
4.根据函数思想对应物理图像分析求解。
【例1】如图甲所示,用一轻质绳拴着一质量为的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为,小球在最高点的速度大小为,其图像如图乙所示,则( )
A.轻质绳长为
B.当地的重力加速度为
C.当时,轻质绳的拉力大小为
D.只要,小球在最低点和最高点时绳的拉力差均为
【例2】如图甲所示,一质量m=4kg的小球(可视为质点)以v0=4m/s的速度从A点冲上竖直光滑半圆轨道。当半圆轨道的半径R发生改变时,小球对B点的压力与半径R的关系图像如图乙所示,g取10m/s2,下列说法不正确的是( )
A.x=2.5
B.y=40
C.若小球能通过轨道上的C点,则其落地点距A点的最大水平距离为0.80m
D.当小球恰能通过轨道上的C点时,半圆轨道的半径R=64cm
【变式演练1】如图甲所示,质量为0.2kg的小球套在竖直固定的光滑圆环上,并在圆环最高点保持静止。受到轻微扰动后,小球由静止开始沿着圆环运动,一段时间后,小球与圆心的连线转过θ角度时,小球的速度大小为v,v2与csθ的关系如乙图所示,g取 。则( )
A.圆环半径为0.6m
B.时,小球所受合力为4N
C.0≤θ≤π过程中, 圆环对小球的作用力一直增大
D.0≤θ≤π过程中,圆环对小球的作用力先减小后增大
【变式演练2】如图甲,固定在竖直面内的光滑圆形管道内有一小球在做圆周运动,小球直径略小于管道内径,管道最低处N装有连着数字计时器的光电门,可测球经过N点时的速率,最高处装有力的传感器M,可测出球经过M点时对管道作用力F(竖直向上为正),用同一小球以不同的初速度重复试验,得到F与的关系图像如图乙,c为图像与横轴交点坐标,b为图像延长线与纵轴交点坐标,重力加速度为g,则下列说法中正确的是( )
A.小球的质量为
B.小球做圆周运动的半径为
C.当小球经过N点时满足,则经过M点时对内管道壁有压力
D.若小球经过N点时满足,则经过M点时对轨道无压力
【变式演练3】一半径为r的小球紧贴竖直放置的圆形管道内壁做圆周运动,如图甲所示。小球运动到最高点时管壁对小球的作用力大小为,小球的速度大小为v,其图像如图乙所示。已知重力加速度为g,规定竖直向下为正方向,不计一切阻力。则下列说法正确的是( )
A.小球的质量为
B.圆形管道内侧壁半径为
C.当时,小球受到外侧壁竖直向上的作用力,大小为
D.小球在最低点的最小速度为
【变式演练4】如图1所示,将长为的轻绳一端固定在点的拉力传感器上,另一端与一质量为且可视为质点的小球相连,拉直轻绳使其与竖直方向夹角为。现让小球在同角下由静止开始在竖直面内做圆周运动,记录每个角下小球运动过程中传感器上的最大拉力与最小拉力,并作出它们之间的部分关系图像如题图2所示。忽略一切阻力及轻绳长度变化,重力加速度为,则图2中( )
A.图线的斜率与小球质量无关B.的大小与绳长有关
C.的大小可能为D.当时对应的
【变式演练5】宇航员在空气稀薄的某星球上用一根不可伸长轻绳一端连接固定的拉力传感器,另一端连接质量为200g的小钢球,如图甲所示。多次拉起小钢球使绳伸直至不同位置并由静止释放,每次释放后小球均在竖直平面内摆动,拉力传感器分别记录下每次释放小钢球后,小钢球在竖直平面内摆动过程中绳子拉力的最大值和最小值。作出图像,如图乙所示,根据图像判断下列说法正确的是( )
A.增大小球质量,图像斜率会变大
B.随着释放高度增加,与的差值变大
C.该星球表面的重力加速度为
D.若该星球半径是地球半径的一半,则其第一宇宙速度约为4km/s
运动模型
向心力的来源图示
运动模型
向心力的来源图示
飞机水平转弯
圆锥摆
火车转弯
飞车走壁
汽车在
水平路
面转弯
水平转台
几何分析
目的是确定圆周运动的圆心、半径等
运动分析
目的是确定圆周运动的线速度、角速度、向心加速度等
受力分析
目的是通过力的合成与分解,表示出物体做圆周运动时,外界所提供的向心力
轻绳模型(最高点无支撑)
轻杆模型(最高点有支撑)
实例
球与绳连接、水流星、沿内轨道运动的“过山车”等
球与杆连接、球在光滑管道中运动等
图示
受力示意图
F弹向下或等于零
F弹向下、等于零或向上
力学方程
mg+F弹=meq \f(v2,R)
mg±F弹=meq \f(v2,R)
临界特征
F弹=0
mg=meq \f(vmin2,R)
即vmin=eq \r(gR)
v=0
即F向=0
F弹=mg
讨论分析
(1)最高点,若v≥eq \r(gR),F弹+mg=meq \f(v2,R),绳或轨道对球产生弹力F弹
(2)若v
(2)当0
(4)当v>eq \r(gR)时,mg+F弹=meq \f(v2,R),F弹指向圆心并随v的增大而增大
相关试卷
这是一份专题32 近代物理初步-2025高考物理模型与方法热点题型归类训练,文件包含专题32近代物理初步原卷版docx、专题32近代物理初步解析版docx等2份试卷配套教学资源,其中试卷共108页, 欢迎下载使用。
这是一份专题31 光学-2025高考物理模型与方法热点题型归类训练,文件包含专题31光学原卷版docx、专题31光学解析版docx等2份试卷配套教学资源,其中试卷共99页, 欢迎下载使用。
这是一份专题20 电场力的性质-2025高考物理模型与方法热点题型归类训练,文件包含专题20电场力的性质原卷版docx、专题20电场力的性质解析版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。