所属成套资源:中考数学二轮复习压轴题培优训练专题(2份,原卷版+解析版)
中考数学二轮复习压轴题培优训练专题24函数与菱形存在性问题(2份,原卷版+解析版)
展开
这是一份中考数学二轮复习压轴题培优训练专题24函数与菱形存在性问题(2份,原卷版+解析版),文件包含中考数学二轮复习压轴题培优训练专题24函数与菱形存在性问题原卷版doc、中考数学二轮复习压轴题培优训练专题24函数与菱形存在性问题解析版doc等2份试卷配套教学资源,其中试卷共97页, 欢迎下载使用。
我们已经知道菱形是特殊的平行四边形,它的判定方法一共有五种,分别是
①四边都相等的四边形是菱形;②两条对角线互相垂直的平行四边形是菱形 ;③邻边相等的平行四边形是菱形;④对角线互相垂直平分的四边形是菱形 ;⑤一条对角线平分一个顶角的平行四边形是菱形.
在做几何证明题的时候我们常用的判定方法主要是前三种.
二次函数和菱形存在性问题作为压轴题目,结合了“分类讨论思想”,“方程思想”“菱形的判定方法”,势必要比单纯的菱形判定思考难度要大的多,纵观历年中考真题,菱形存在性问题主要是以“两定两动”为设问方式,其中两定指的是四边形四个顶点其中有两个顶点的坐标是确定的或者是可求解的;两动指的是其中一个动点在一条直线或者抛物线上,另外一个动点是平面内任意一点或者该动点也在一条直线或者抛物线上.
经典例题
【例1】(2022春•锡山区校级期中)如图,在矩形ABCD中,BD是对角线,AB=6cm,BC=8cm,点E从点D出发,沿DA方向匀速运动,速度是2cm/s;点F从点B出发,沿BD方向匀速运动,速度是1cm/s,MN是过点F的直线,分别交AB、BC于点M、N,且在运动过程中始终保持MN⊥BD.连接EM、EN、EF,两点同时出发,设运动时间为t(s)(0<t<3.6),请回答下列问题:
(1)求当t为何值时,△EFD∽△ABD?
(2)求当t为何值时,△EFD为等腰三角形;
(3)将△EMN沿直线MN进行翻折,形成的四边形能否是菱形?若存在,求出t的值;若不存在,请说明理由.
【例2】(2022秋•南岸区校级期中)如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边△ABC,S△ABC=,且CA⊥x轴.
(1)若点C在反比例函数y=(k≠0)的图象上,求该反比例函数的解析式;
(2)在(1)中的反比例函数图象上是否存在点N,使四边形ABCN是菱形,若存在请求出点N坐标,若不存在,请说明理由;
(3)在(2)的条件下,取OB的中点M,将线段OM沿着y轴上下移动,线段OM的对应线段是O1M1,直接写出四边形CM1O1N周长的最小值.
【例3】(2022秋•龙华区期中)已知:在平面直角坐标系中,直线l1:y=﹣x+2与x轴,y轴分别交于A、B两点,直线l2经过点A,与y轴交于点C(0,﹣4).
(1)求直线l2的解析式;
(2)如图1,点P为直线l1一个动点,若△PAC的面积为10时,请求出点P的坐标.
(3)如图2,将△ABC沿着x轴平移,平移过程中的△ABC记为△A1B1C1,请问在平面内是否存在点D,使得以A1、C1、C、D为顶点的四边形是菱形?若存在,直接写出点D的坐标.
【例4】(2022秋•博罗县期中)如图,抛物线y=﹣x2+x+1与y轴交于点A,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).
(1)求直线AB的函数解析式.
(2)动点P在线段OC上,从原点O出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长为s个单位,求s与t的函数解析式,并写出t的取值范围.
(3)在(2)的条件下(不考虑点P与点O,C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?对于所求的t的值,平行四边形BCMN是否为菱形?若存在,请直接写出四边形BCMN为菱形时t的值,若不能存在请说明理由.
培优训练
一.解答题
1.(2022秋•思明区校级期中)如图,正方形OABC的边OA、OC分别在x轴和y轴上,顶点B在第一象限,AB=6,点E、F分别在边AB和射线OB上运动(E、F不与正方形的顶点重合),OF=2BE,设BE=t.
(1)当t=2时,则AE= ,BF= ;
(2)当点F在线段OB上运动时,若△BEF的面积为,求t的值;
(3)在整个运动过程中,平面上是否存在一点P,使得以P、O、E、F为顶点,且以OF为边的四边形是菱形?若存在,求出t的值;若不存在,请说明理由.
2.(2022•城西区开学)如图,在平面直角坐标系中,直线y=2x+4与x轴,y轴分别交于A,B两点,直线y=﹣x+1与x轴,y轴分别交于C,D两点,这两条直线相交于点P.
(1)求点P的坐标;
(2)求四边形AODP的面积;
(3)在坐标平面内是否存在一点Q,使以A,P,D,Q为顶点的四边形是菱形?若存在,请求出点Q的坐标,若不存在,请说明理由.
3.(2022春•大足区期末)已知:在平面直角坐标系中,直线l1:y=﹣x+2与x轴,y轴分别交于A、B两点,直线l2经过点A,与y轴交于点C(0,﹣4).
(1)求直线l2的解析式;
(2)如图1,点P为直线l1一个动点,若△PAC的面积等于10时,请求出点P的坐标;
(3)如图2,将△ABC沿着x轴平移,平移过程中的△ABC记为△A1B1C1,请问在平面内是否存在点D,使得以A1、C1、C、D为顶点的四边形是菱形?若存在,直接写出点D的坐标.
4.(2022•崆峒区校级二模)如图,抛物线y=﹣x2+bx+c交y轴于点A(0,2),交x轴于点B(4,0)、C两点,点D为线段OB上的一个动点(不与O、B重合),过点D作DM⊥x轴,交AB于点M,交抛物线于点N.
(1)求抛物线的解析式;
(2)连接AN和BN,当△ABN的面积最大时,求出点D的坐标及△ABN的最大面积;
(3)在平面内是否存在一点P,使得以点A,M,N,P为顶点,以AM为边的四边形是菱形?若存在,请求出点P的坐标;若不存在,请说明理由.
5.(2022•前进区三模)如图,在平面直角坐标系中,矩形ABCO的边OC与x轴重合,OA与y轴重合,BC=2,D是OC上一点,且OD,DC的长是一元二次方程x2﹣5x+4=0的两个根(OD>DC).
(1)求线段OD,OC,AD的长;
(2)在线段AB上有一动点P(不与A、B重合),点P从点A出发,以每秒1个单位长度的速度沿AB方向匀速运动,到终点B停止,设运动的时间为t秒,过P点作PE∥BD交AD于E,PF∥AD交BD于F,求四边形DEPF的面积S与时间t的函数关系式;
(3)在(2)的条件下,在点P运动的过程中,x轴上是否存在点Q,使以A、D、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.
6.(2021秋•莱西市期末)已知:如图,菱形ABCD中,AB=5cm,AC=6cm,动点P从点B出发,沿BA方向匀速运动;同时,动点Q从点C出发,沿CB方向匀速运动,它们的运动速度均为1cm/s.过点P作PM∥BC,过点B作BM⊥PM,垂足为M,连接QP.设运动时间为t(s)(0<t<5).解答下列问题:
(1)菱形ABCD的高为 cm,cs∠ABC的值为 ;
(2)在运动过程中,是否存在某一时刻t,使四边形MPQB为平行四边形?若存在,求出t的值;若不存在,请说明理由.
(3)是否存在某一时刻t,使四边形MPQB的面积是菱形ABCD面积的?若存在,求出t的值;若不存在,请说明理由.
(4)是否存在某一时刻t,使点M在∠PQB的角平分线上?若存在,求出t的值;若不存在,请说明理由.
7.(2022•青岛一模)已知,在菱形ABCD中,对角线AC,BD相交于点O,AC=6cm,BD=8cm.延长BC至点E,使CE=BC,连接ED.点F从点E出发,沿ED方向向点D运动,速度为1cm/s,过点F作FG⊥ED垂足为点F交CE于点G;点H从点A出发,沿AD方向向点D运动,速度为1cm/s,过点H作HP∥AB,交BD于点P,当F点停止运动时,点H也停止运动.设运动时间为t(0<t≤3),解答下列问题:
(1)求证:∠BDE=90°;
(2)是否存在某一时刻t,使G点在ED的垂直平分线上?若存在,求出t值;若不存在,请说明理由.
(3)设六边形PCGFDH的面积为S(cm2),求S与t的函数关系式;
(4)连接HG,是否存在某一时刻t,使HG∥AC?若存在,求出t值;若不存在,请说明理由.
8.(2021秋•市南区期末)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=6cm,BD=8cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F.当直线EF停止运动,点P也停止运动.连接PF,设运动时间为t(s).解答下列问题:
(1)用含t的代数式表示线段EF: ;
(2)当t为何值时,四边形ADFP是平行四边形;
(3)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;
(4)是否存在某一时刻t,使得PF与EF的夹角为45°?若存在,求出t的值,若不存在,说明理由.
9.(2022春•双峰县期末)问题情境:在综合实践课上,老师让同学们探究“平面直角坐标系中的旋转问题”,如图,在平面直角坐标系中,四边形AOBC是矩形,O(0,0),点A(5,0),点B(0,3).
操作发现:以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.
(1)如图1,当点D落在BC边上时,求点D的坐标;
继续探究:(2)如图2,当点D落在线段BE上时,AD与BC交于点H,求证△ADB≌△AOB;
拓展探究:如图3,点M是x轴上任意一点,点N是平面内任意一点,是否存在点N使以A、D、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
10.(2022春•营口期末)如图1,直线y=x+6与x,y轴分别交于A,B两点,∠ABO的角平分线与x轴相交于点C.
(1)求点C的坐标;
(2)在直线BC上有两点M,N,△AMN是等腰直角三角形,∠MAN=90°,求点M的坐标;
(3)点P在y轴上,在平面上是否存在点Q,使以点A、B、P、Q为顶点的四边形为菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
11.(2022春•曹妃甸区期末)如图,在矩形ABCD中,AB=3,∠CAB=30°,点P从点A出发,每秒个单位长度的速度沿AB方向运动,点Q从点C出发,以每秒2个单位长度的速度沿对角线CA方向运动.已知点P、Q两点同时出发.当点Q到达点A时,P、Q两点同时停止运动,连接PQ,设运动时间为t秒.
(1)BC= ,AC= ;
(2)当t为何值时,AP=AQ;
(3)在运动过程中,是否存在一个时刻t,使所得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形?若存在,求出t的值;若不存在,请说明理由.
(4)当点P关于点Q的对称点P′落在△ACD的内部(不包括边上)时,请直接写出t的取值范围.
12.(2022春•巴东县期末)已知点E是平行四边形ABCD边CD上的一点(不与点C,D重合).
(1)如图1,当点E运动到CD的中点时,连接AE、BE,若AE平分∠BAD,证明:CE=CB.
(2)如图2,过点E作EF⊥DC交直线CB于点F,连接AF.若∠ABC=120°,BC=2.封AB=4.在线段CF上是否存在一点H.使得四边形AFHD为菱形?若存在,请求出ED,CH的长;若不存在,请简单地说明理由.
13.(2022春•同江市期末)如图,平面直角坐标系中,把矩形OABC沿对角线OB所在的直线折叠,点A落在点D处,OD与BC交于点E.OA,OC的长满足式子|OA﹣6|+=0.
(1)求点A,C的坐标;
(2)直接写出点E的坐标,并求出直线AE的函数解析式;
(3)F是x轴上一点,在坐标平面内是否存在点P,使以O,B,P,F为顶点的四边形为菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
14.(2022春•抚远市期末)如图,平面直角坐标系中,把矩形OABC沿对角线OB所在的直线折叠,点A落在点D处,OD与BC交于点E.OA,OC的长满足式子|OA﹣6|+=0.
(1)求点A,C的坐标;
(2)直接写出点E的坐标,并求出直线AE的函数解析式;
(3)F是x轴上一点,在坐标平面内是否存在点P,使以O,B,P,F为顶点的四边形为菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
15.(2022春•东阳市期末)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴上,且B(4,2),E为直线AC上一动点,连OE,过E作GF⊥OE,交直线BC、直线OA于点F、G,连OF.
(1)求直线AC的解析式.
(2)当E为AC中点时,求CF的长.
(3)在点E的运动过程中,坐标平面内是否存在点P,使得以P、O、G、F为顶点的四边形为菱形,若存在,求出点P的横坐标,若不存在,请说明理由.
16.(2022•大方县模拟)如图,抛物线与x轴交于A,B(4,0)两点,与y轴交于点C,直线经过点B,C,点P是抛物线上的动点,过点P作PQ⊥x轴,垂足为Q,交直线BC于点D.
(1)求抛物线的解析式及点A的坐标;
(2)当点P位于直线BC上方且△PBC面积最大时,求P的坐标;
(3)若点E是平面直角坐标系内的任意一点,是否存在点E,使得以A,C,D,E为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点E的坐标;若不存在,请说明理由.
17.(2022•山西模拟)综合与探究
如图,二次函数y=ax2+bx+4的图象与x轴分别交于点A(﹣2,0),B(4,0),点E是x轴正半轴上的一个动点,过点E作直线PE⊥x轴,交抛物线于点P,交直线BC于点F.
(1)求二次函数的表达式.
(2)当点E在线段OB上运动时(不与点O,B重合),恰有线段PF=EF,求此时点P的坐标.
(3)试探究:若点Q是y轴上一点,在点E运动过程中,是否存在点Q,使得以点C,F,P,Q为顶点的四边形为菱形,若存在,直接写出点Q的坐标;若不存在,请说明理由.
18.(2022•建华区二模)综合与实践
如图,已知正方形OCDE中,顶点E(1,0),抛物线y=x2+bx+c经过点C、点D,与x轴交于A、B两点(点B在点A的右侧),直线x=t(t>0)交x轴于点F.
(1)求抛物线的解析式,且直接写出点A、点B的坐标;
(2)若点G是抛物线的对称轴上一动点,且使AG+CG最小,则G点坐标为: ;
(3)在直线x=t(第一象限部分)上找一点P,使得以点P、点B、点F为顶点的三角形与△OBC全等,请你直接写出点P的坐标;
(4)点M是射线AC上一点,点N为平面上一点,是否存在这样的点M,使得以点O、点A、点M、点N为顶点的四边形为菱形?若存在,请你直接写出点N的坐标;若不存在,请说明理由.
19.(2022•红花岗区模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)点P在抛物线上,当∠PBA=∠ACO时,求点P的坐标;
(3)将抛物线的对称轴沿x轴向右平移个单位得直线l,点M为直线l上一动点,在平面直角坐标系中是否存在点N,使以点B,C,M,N为顶点的四边形为菱形?若存在,请求出点N的坐标;若不存在,请说明理由.
20.(2022•蒲城县一模)如图,已知直线与x轴、y轴分别交于B、C两点,抛物线y=ax2+3x+c经过B、C两点,与x轴的另一个交点为A,点E的坐标为.
(1)求抛物线的函数表达式;
(2)点E,F关于抛物线的对称轴直线l对称,Q点是对称轴上一动点,在抛物线上是否存在点P,使得以E、F、P、Q为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.
21.(2022春•兴宁区校级期末)如图,抛物线y=x2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,连接AC,BC,点P是直线AC下方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)连接AP,CP,设P点的横坐标为m,△ACP的面积为S,求S与m的函数关系式;
(3)试探究:过点P作BC的平行线1,交线段AC于点D,在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标,若不存在,请说明理由.
22.如图,已知抛物线y=ax2+bx﹣2的图象与x轴交于A,B两点,与y轴交于点C.
﹣3和1是关于x的一元二次方程ax2+bx﹣2=0的两个根.
(1)求该抛物线的解析式;
(2)过点B作BD∥AC交抛物线于点D,BD与y轴交于点E,P为直线AC下方抛物线上的一个动点,连接PB交AC于点F,求S△PEF的最大值及此时点P的坐标;
(3)在(2)的条件下,将该抛物线向右平移2个单位后得到新抛物线,新抛物线与原抛物线相交于点Q,点M为原抛物线对称轴上一点,在平面直角坐标系中是否存在点N,使得以点A,M,N,Q为顶点的四边形是菱形,若存在,请直接写出点N的坐标;如不存在,请说明理由.
23.如图,已知抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B两点,与y轴交于点C且tan∠ABC=1,连接AC、BC.
(1)求抛物线的解析式;
(2)若P点是直线BC下方一点,过P点作PE∥AC交BC于点E,PH∥y轴交BC于点H,求CE+BH的最小值及此时P点的坐标.
(3)在第(2)条件下,将该抛物线向右平移2个单位后得到新抛物线,新抛物线与原抛物线相交于点F,点M为原抛物线对称轴上一点,在平面直角坐标系中是否存在点,使得以点H,M,N,F为顶点的四边形是菱形,若存在,请直接写出点N的坐标;如不存在,请说明理由.
24.(2022•渝北区自主招生)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(1,0),且tan∠OAC=.
(1)求抛物线的解析式;
(2)如图1,点M为直线AC下方抛物线上一点,过点M作MD∥y轴交AC于点D,求MD+DC的最大值及此时点M的坐标;
(3)如图2,连接BC,将△BOC绕着点A逆时针旋转60°得到△B'O'C',将抛物线y=ax2+bx﹣沿着射线CB方向平移,使得平移后的新抛物线经过O',H是新抛物线对称轴上一点,在平面直角坐标系中是否存在点P,使以点B',C',H,P为顶点的四边形是以B'C'为边的菱形,若存在,请直接写出点P的坐标;若不存在,请说明理由.
相关试卷
这是一份中考数学二轮复习压轴题培优训练专题23函数与矩形存在性问题(2份,原卷版+解析版),文件包含中考数学二轮复习压轴题培优训练专题23函数与矩形存在性问题原卷版doc、中考数学二轮复习压轴题培优训练专题23函数与矩形存在性问题解析版doc等2份试卷配套教学资源,其中试卷共98页, 欢迎下载使用。
这是一份专题24函数与菱形存在性问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(教师版含解析),共81页。
这是一份最新中考数学压轴大题之经典模型 专题24 函数与菱形存在性问题-【压轴必刷】,文件包含专题24函数与菱形存在性问题-压轴必刷2023年中考数学压轴大题之经典模型培优案原卷版docx、专题24函数与菱形存在性问题-压轴必刷2023年中考数学压轴大题之经典模型培优案解析版docx等2份试卷配套教学资源,其中试卷共98页, 欢迎下载使用。