所属成套资源:人教版数学七年级上册同步学案+教学设计
初中人教版(2024)1.4.1 有理数的乘法优秀第1课时导学案及答案
展开这是一份初中人教版(2024)1.4.1 有理数的乘法优秀第1课时导学案及答案,共11页。学案主要包含了针对训练,参考答案等内容,欢迎下载使用。
学习目标
1. 能够理解探究有理数乘法法则给出的推理过程,体会有理数乘法法则的合理性.
2. 掌握有理数乘法法则,能够运用有理数乘法法则计算两个数的乘法.
重点难点突破
★知识点1:有理数的乘法法则
有理数的乘法法则只适用于“两个数”相乘,在计算时应先确定积的符号,再计算积的绝对值.
即有:(1)两数相乘,同号得正,异号得负,并把绝对值相乘.
(2)任何数与0相乘,都得0.
★知识点2:倒数
求一个数的倒数就是用1除以这个数,正数的倒数是正数,负数的倒数是负数,0没有倒数.
求小数的倒数先把小数化成分数,再分子、分母颠倒位置.求分数的倒数先把分数化成假分数,再求倒数.
核心知识
1. 有理数的乘法法则:
两数相乘,同号 ,异号 ,并把 .
任何数同零相乘都得零.
2. 互为倒数:乘积是 的两个数互为倒数.
思维导图
引入新课
1.2×3等于多少?表示什么?
2.请将(-2)+(-2)+(-2)写成乘法算式.
新知探究
问题1:一只小虫,沿一条东西方向的跑道,以每分钟3米的速度一直向东爬行. 记小虫原来的位置为点O,那么在3分钟后、2分钟后、1分钟后、0分钟、1分钟前、2分钟前、3分钟前,它位于这一点的哪个方向?相距多少米?
追问1:观察下面的四个乘法算式,你能发现什么规律吗?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追问2:观察下面的三个乘法算式,说明以上规律在引入负数后是否仍然成立?
3×(-1)= -3 ;
3×(-2)= -6 ;
3×(-3)= -9 .
问题2:两只小虫,在同一地点O处,它们沿一条东西方向的跑道爬行. 若一只分别以每分钟3米、2米、1米、0米的速度向东爬行3分钟,另一只分别以每分钟1米、2米、3米的速度向西爬行3分钟,那么它们爬行后的位置分别在这一点的哪个方向?相距多少米?
追问1:观察下面的算式,你又能发现什么规律吗?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
追问2:要使这个规律在引入负数后仍成立,那么应有
(-1)×3= -3 ;
(-2)×3= -6 ;
(-3)×3= -9 .
追问3:从符号和绝对值两个角度观察上述算式,你发现有什么规律?
问题3:一只小虫,沿一条东西方向的跑道,以每分钟3米的速度一直向西爬行. 记小虫原来的位置为点O,那么在3分钟后、2分钟后、1分钟后、0分钟、1分钟前、2分钟前、3分钟前,它分别位于这一点的哪个方向?相距多少米?
追问1:利用上面归纳的结论计算下面的算式,你发现什么规律?
(-3)×3=-9,
(-3)×2=-6,
(-3)×1=-3,
(-3)×0=0.
追问2:按照上述规律,下面的空格可以各填什么数,从中可以归纳出什么结论?
(-3)×(-1)= ;
(-3)×(-2)= ;
(-3)×(-3)= .
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘.
任何数与0相乘,都得0.
法则挖掘
问题4:阅读,填空:
(1)(-5) ×(-3) …………………………同号两数相乘
(-5) ×(-3)=+( ) ……………得正
5×3=15 …………………………把绝对值相乘
所以(-5) ×(-3)=15.
(2)(-7) ×4…………………………
(-7) ×4=-( ) ……………
7×4=28 ……………………
所以(-7) ×4= .
追问:通过上题,你认为:非零两数相乘,主要步骤是什么?
典例分析
例1:计算:(1)(-3)×9; (2)8×(-1); (3).
追问1:观察(2)式,你有什么发现? 8×(-1)= -8.2;观察(3)式,有什么特点?
追问2:数a(a≠0)的倒数是什么?
【针对训练】说出下列各数的倒数:1,-1,,,5,-5,,.
追问3:0有没有倒数?
追问4:一个数的倒数等于它本身,这个数等于多少?
例2:用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km,气温的变化量为-6ºC.攀登3 km后,气温有什么变化?
当堂巩固
1. 确定下列两数积的符号
(1)6×(-9); (2)4×5; (3)(-7)×(-9); (4)(-12)×3.
2. 填写下表
能力提升
1. 若a<0, b>0,则ab____0.
2. 若a<0,b<0, 则ab____0.
3. 若ab>0,则a、b应满足什么条件?
4. 若ab<0,则a、b应满足什么条件?
5. 已知-3a是一个负数,则( ).
A. a>0 B. a<0 C. a≥0 D. a≤0
感受中考
1.(2022•张家界)-2022的倒数是( )
A.2022B.C.-2022D.
2.(2022•深圳)下列互为倒数的是( )
A.3和B.-2和2C.3和D.-2和
3.(2022•黔东南州)下列说法中,正确的是( )
A.2与-2互为倒数B.2与互为相反数
C.0的相反数是0D.2的绝对值是-2
4.(2022•宜昌)下列说法正确的个数是( )
①-2022的相反数是2022;②-2022的绝对值是2022;③的倒数是2022.
A.3B.2C.1D.0
5.(2022•包头)若a,b互为相反数,c的倒数是4,则3a+3b-4c的值为( )
A.-8B.-5C.-1D.16
6.(2022•泰安)计算的结果是( )
A.-3B.3C.-12D.12
课堂小结
1. 本节课的学习,你有哪些收获?请你用自己的语言复述一下有理数乘法法则.
2. 本节课的学习,你领悟到哪些数学思想方法?
【参考答案】
核心知识
1. 得正;得负;绝对值相乘;
2. 1.
引入新课
1.2×3=6,表示3个2相加,即:2×3=2+2+2.
2.(-2)+(-2)+(-2)=(-2)×3.
典例分析
例1:解:(1)(-3)×9 (异号两数相乘)
=-(3×9) (积为负,把绝对值相乘)
=-27;
(2)8×(-1) (异号两数相乘)
=-(8×1) (积为负,把绝对值相乘)
=-8;
(3) (同号两数相乘)
=+ (积为正,把绝对值相乘)
=1.
例2:解:气温的变化量为(-6)×3= -18(ºC).
答:气温下降了18ºC.
当堂巩固
1. (1)负;(2)正;(3)正;(4)负.
2. 积的符号:负;正;正;负;
绝对值:35;90;180;100;
结果:-35;90;180;-100.
能力提升
1.<;
2.>;
3. a,b同号;
4. a,b异号;
5. A.
感受中考
1.【解答】解:-2022的倒数是:.
故选:B.
2.【解答】解:A、因为,所以3和是互为倒数,因此选项A符合题意;
B、因为,所以-2与2不是互为倒数,因此选项B不符合题意;
C、因为,所以3和不是互为倒数,因此选项C不符合题意;
D、因为,所以-2和不是互为倒数,因此选项D不符合题意;
故选:A.
3.【解答】解:A选项,2与-2互为相反数,故该选项不符合题意;
B选项,2与互为倒数,故该选项不符合题意;
C选项,0的相反数是0,故该选项符合题意;
D选项,2的绝对值是2,故该选项不符合题意;
故选:C.
4.【解答】解:①-2022的相反数是2022,故①符合题意;
②-2022的绝对值是2022,故②符合题意;
③的倒数是2022,故③符合题意;
正确的个数是3个,
故选:A.
5.【解答】解:因为a,互为相反数,的倒数是4,
所以a+b=0,,
所以3a+3b-4c
=3(a+b)-4c
=0-4×
=-1.
故选:C.
6.【解答】解:原式.
故选:B.
相关学案
这是一份人教版(2024)1.4.1 有理数的乘法优秀第1课时学案,共11页。学案主要包含了针对训练,参考答案等内容,欢迎下载使用。
这是一份初中数学人教版七年级上册1.4.1 有理数的乘法导学案及答案,共4页。学案主要包含了学习目标等内容,欢迎下载使用。
这是一份初中人教版1.4.1 有理数的乘法学案,共4页。学案主要包含了知识链接,自学自测,我的疑惑,课堂小结等内容,欢迎下载使用。