终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    (安徽版)中考数学一轮复习专题训练专题12 一次函数(含答案)

    立即下载
    加入资料篮
    (安徽版)中考数学一轮复习专题训练专题12 一次函数(含答案)第1页
    (安徽版)中考数学一轮复习专题训练专题12 一次函数(含答案)第2页
    (安徽版)中考数学一轮复习专题训练专题12 一次函数(含答案)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (安徽版)中考数学一轮复习专题训练专题12 一次函数(含答案)

    展开

    这是一份(安徽版)中考数学一轮复习专题训练专题12 一次函数(含答案),共30页。试卷主要包含了单选题,填空题,综合题等内容,欢迎下载使用。
    1.(2022·安徽)在同一平面直角坐标系中,一次函数与的图像可能是( )
    A.B.
    C.D.
    2.(2022·宣州模拟)一次函数的图象经过点,,不经过第一象限,则下列关系正确的是( )
    A.m<nB.C.m=nD.不能确定
    3.(2022·义安模拟)疫情防控时刻不能松懈,某同学按照要求每天在家用水银体温计测量体温.某天早上,他发现水银体温计上部分刻度线不清晰.已知水银体温计的读数与水银柱的长度的关系如下表所示:
    若该同学通过测量水银柱长度为,那么他的体温是( )
    A.B.C.D.
    4.(2022·安徽模拟)已知函数(其中)的图象如图所示,则函数的图象可能正确的是( )
    A.B.
    C.D.
    5.(2022·霍邱模拟)弹簧伸长的长度与所受拉力的大小成正比,某次实验中,小明记录了同一根弹簧的长度y(cm)和所挂重物的质量x(kg)(0≤x≤12)之间的部分对应数据如下表所示,下列说法中正确的是( )
    A.x,y都是变量,y是x的正比例函数
    B.当所挂重物的质量为5kg时,弹簧长度是14.5cm
    C.物体质量由5kg增加到7kg,弹簧的长度增加了1cm
    D.该弹簧不挂重物时的长度是10cm
    6.(2022·蜀山模拟)“一方有难,八方支援”是中华民族的传统美德.在某次救援行动中,上午8时甲、乙两车同时从M地驶向N地,路程y(千米)与时间x(小时)的函数关系如图所示.甲车在上午10时30分到达N地,则下列说法错误的是( )
    A.乙车先到达N地
    B.乙车出发后小时追上甲车
    C.甲、乙两车在出发后1小时相距最远
    D.乙车在上午10时11分到达N地
    7.(2022·来安模拟)已知,两点都在关于的一次函数的图象上,则,的大小关系为( )
    A.B.C.D.无法确定
    8.(2022·肥东模拟)如图,直线y=-x+b与x、y轴分别交于点A、B,与直线y=kx(k>0)交于点G,分别过点A、B作直线y=kx的垂线,垂足分别为D、E,若OA=10、OD=6,则DE的长为( )
    A.4B.3C.2D.1
    9.(2022·瑶海模拟)已知直线y=-4x-6经过点(m,n),且2m-7n≤0,则下列关系式正确的是( )
    A.B.C.D.
    10.(2022·蚌埠模拟)如图是温度计的示意图,图中左边的温度表示摄氏温度,右边的温度表示华氏温度.小明观察温度计发现,两个刻度x,y之间的关系如下表:
    据此可知,摄氏温度为15时,对应的华氏温度应为( )
    A.15B.59C.-9.4D.54
    二、填空题
    11.(2022八下·无为期末)如图,直线与x轴,y轴分别交于点A,B,将直线向左平移得到一条新的直线,它与x轴,y轴分别交于点C,D.若,则
    (1)点D的坐标是 ;
    (2)直线CD的解析式为 .
    12.(2022八下·黄山期末)若一次函数的图象经过第一、三、四象限,则实数m的取值范围 .
    13.(2022八下·芜湖期末)如图,正比例函数与一次函数相交于点P,则关于x的不等式组的解集为 .
    14.(2022八下·淮南期末)直线向上平移1个单位,所得直线的解析式是 .
    15.(2022·来安模拟)如图,直线l对应的函数表达式为,在直线l上,顺次取点,,,,……,,构成的形如“7”的图形的阴影部分面积分别为;;;……
    猜想并填空:
    (1) ;
    (2) (用含n的式子表示);
    (3) (用含n的式子表示,要化简).
    16.(2022·合肥模拟)如图①,我们把一个矩形称作一个基本图形,把矩形的顶点及其对称中心称作基本图形的特征点,显然这样的基本图形共有5个特征点,将此基本图形不断地复制并平移,使得相邻两个基本图形的两个特征点重合,这样得到第2个图;第3个图;……;
    (1)观察以上图形并完成下表:
    猜想:在第n个图中特征点的个数为 (用含n的代数式表示).
    (2)在平面直角坐标系中,点A、点B是坐标轴上的两点,且OA=1,以OA、OB为边作一个矩形,其一条对角线所在直线的解析式为y=x,将此矩形作为基本图形不断复制和平移,如图②所示,若各矩形的对称中心分别为O1、O2、O3、……,则O2022的坐标为 .
    17.(2022九下·安庆开学)如图.直线与坐标轴相交于A、B两点,动点P在线段AB上,动点Q在线段OA上、连结OP,且满足,则当 度时,线段OQ的最小值为 .
    18.(2021八上·蜀山期末)已知一次函数y=2x+6-2a(a为常数)
    (1)若该函数图象与y轴的交点位于y轴的正半轴上,则a的取值范围是
    (2)当-1≤x≤2时,函数y有最大值-3,则a的值为
    19.(2021八上·东至期末)已知y﹣2与x成正比例,且当x=﹣1时y=5,则y与x的函数关系式是 .
    20.(2021八上·凤阳期末)如图,直线经过点A(m,-2)和点B(-4,0),直线过点A,则不等式b的解集为 .
    三、综合题
    21.(2022八下·无为期末)如图,函数和的图象相交于点.
    (1)求a,k的值;
    (2)根据图象,直接写出不等式的解集.
    22.(2022八下·无为期末)文具店打算用5000元(全部用完)购进A、B两种类型的计算器进行零售,进价和零售价如下表所示:
    若购进A类型的计算器x个,B类型的计算器y个,请解决下列问题.
    (1)求y与x之间的函数表达式;
    (2)若A、B两种类型的计算器的进货总数不超过150个,请问文具店如何进货,才能使两种计算器全部卖完后能获得最大利润?
    23.(2022八下·合肥期末)某商店“五一”期间举行了促销活动,经过市场调查发现,某种商品的日销售量y(件)是售价x(元/件)的一次函数,下表列出了该商品的售价x、日销售量y、日销售利润w(元)的部分对应值:
    (1)求y关于x的函数解析式;
    (2)商店在活动期间为了促销,求表中m、n的值.
    24.(2022八下·八公山期末)如图,在平面直角坐标系中,直线:与直线:交于点A(1,2),直线与轴交于点B(0,3),直线与轴交于点C(-1,0).
    (1)求直线、的函数表达式;
    (2)连接,求三角形ABC的面积.
    25.(2022·宣州模拟)如图,直线与双曲线交于点A、B,过点A作AP⊥x轴,垂足P点的坐标是,连接BP,且.
    (1)求正比例函数和反比例函数的解析式.
    (2)当时,求x的取值范围.
    26.(2022·涡阳模拟)已知直线与x轴交于A点、与y轴交于B点,点P是线段AB上任意一点.
    (1)求A、B两点的坐标;
    (2)设P点的坐标为(m,n),且以P为顶点的抛物线W经过C(﹣2,0)和D(d,0),求m与n的函数关系式及△PCD面积的最大值.
    27.(2022·义安模拟)已知一次函数与反比例函数的一支图象都经过.
    (1)求一次函数和反比例函数的解析式.
    (2)根据图象,请直接写出当时,x的取值范围.
    28.(2022·蜀山模拟)如图,一次函数y1=kx+b与反比例函数(x>0)的图象交于A(1,6)、B(3,n)两点,与x轴交于点C.
    (1)求k、b、m的值;
    (2)根据图象,直接写出当y1>y2时x的取值范围;
    (3)点P在x轴上,且△APC的面积为12,求点P的坐标.
    29.(2022·蜀山模拟)一辆校车在笔直的公路上正常行驶,发现前方30米处有一辆洒水车沿相同方向缓慢匀速行驶,校车司机随即开始刹车减速,减速后校车行驶路程s(米)与时间t(秒)满足关系式s=at2+bt,而减速后校车速度v(米/秒)与时间t(秒)可用一次函数表示,相关信息如下列图表:
    (1)求a、b的值;
    (2)当校车减速后直至速度减至10米/秒时,它行驶的路程是多少米?
    (3)若洒水车的速度是8米/秒,校车减速后,两辆车何时距离最近,最近距离是多少米?
    30.(2022·肥东模拟)直线:y=kx+4 和抛物线y=ax-x+c都经过点A(2,0),且与y轴有相同的交点.
    (1)求直线及抛物线的解析式;
    (2)点P是抛物线上的一个动点,点P的横坐标为m,且-3≤m≤3平移直线使其经过点P得到直线设直线l′,写出直线l′与y轴的交点的纵坐标为n,求n关于m的函数解析式,以及n的最大值和最小值.
    答案解析部分
    1.【答案】D
    【解析】【解答】解:当时,两个函数的函数值:,即两个图像都过点,A、C不符合题意;
    当时,,一次函数经过一、二、三象限,一次函数经过一、二、三象限,都与y轴正半轴有交点,B不符合题意;
    当时,,一次函数经过一、二、四象限,与y轴正半轴有交点,一次函数经过一、三、四象限,与y轴负半轴有交点,D符合题意.
    故答案为:D.
    【分析】利用一次函数的图象与系数的关系逐项判断即可。
    2.【答案】A
    【解析】【解答】解:∵一次函数的图象不经过第一象限,
    ∴,
    ∴一次函数随x的增大而减小,
    ∵-3<-2,
    ∴m<n.
    故答案为:A.
    【分析】根据一次函数的图象和性质与系数的关系求解即可。
    3.【答案】C
    【解析】【解答】解:设y关于x的函数关系式为y=kx+b(k≠0),
    将点(4.2,35.0)、(8.2,40.0)代入y=kx+b,得
    ,解得:,
    ∴y关于x的函数关系式为y=,
    当x=6.2时,y==37.5,
    ∴他的体温是37.5℃,
    故答案为:C.
    【分析】先利用待定系数法求出函数解析式,再将x=6.2代入计算即可。
    4.【答案】D
    【解析】【解答】解:∵函数y=(x-m)(x-n)与x轴的两个交点坐标为(m,0),(n,0),且m<n,
    ∴m<-1,0<n<1,
    ∴函数y=nx+m经过第一、三、四象限,
    ∴选项D符合题意.
    故答案为:D.
    【分析】根据题意得出m<-1,0<n<1,再根据一次函数的图象和性质得出函数y=nx+m经过第一、三、四象限,即可得出答案.
    5.【答案】D
    【解析】【解答】解:A.x,y都是变量,y是x的一次函数;故A不符合题意.
    设一次函数的解析式为y=kx+b,结合表格的数据可得:
    解得,
    B.当所挂物体的质量为5kg时,弹簧长度是cm,故B不符合题意.
    C.物体质量5 kg时弹簧长度是cm;
    物体质量7kg时,弹簧的长度是cm,
    ∴增加了17-15=2cm,故C不符合题意.
    D.弹簧不挂物体时的长度是10cm,故D符合题意.
    故答案为:D.
    【分析】根据表格中数据求出弹簧的长度与所挂物体的质量之间的函数关系式,再分别判断各选项即可。
    6.【答案】D
    【解析】【解答】A.根据图像可得,乙车的速度是32÷1=32(千米/小时),
    故乙车到达N地需要:70÷32==2.1875(小时),
    ∵2.5>2.1875,
    ∴乙车先到达N地,不符合题意;
    B.甲车在第1个小时行驶了40km,在AB段的速度是:(千米/小时),
    可设乙车出发t小时后追上甲车,
    则有:40+20(t-1)=32t,
    解得:,不符合题意;
    C.根据图像可得甲、乙两车在出发后1小时相距40-32=8(千米),
    当乙车到达N地时,两车相距:(千米),
    ∵8>6.25,
    ∴甲、乙两车在出发后1小时相距最远,不符合题意;
    D.根据题意得:乙车到达N地需要:70÷32=(小时),
    8+小时=10时11.25分,
    故乙车在上午10时11.25分到达N地,符合题意;
    故答案为:D
    【分析】根据函数图象中数据,再结合速度、时间和路程的关系求解即可。
    7.【答案】C
    【解析】【解答】对于一次函数,
    ∵k=-1<0,
    ∴y随x的增大而减小,
    ∵,两点都在关于的一次函数的图象上,且-1>-2,
    故a<b;
    故答案为:C.
    【分析】由于中k=-1<0,可知y随x的增大而减小,据此解答即可.
    8.【答案】C
    【解析】【解答】解:∵OA=10,
    ∴点A的坐标是(10,0),
    把(10,0)代入y=-x+b得,
    0=﹣10+b,
    解得b=10,
    ∴直线为y=﹣x+10,
    当 x=0时,y=10,
    ∴点B的坐标是(0,10),
    ∴OB=10,
    ∵分别过点A、B作直线y=kx的垂线,垂足分别为D、E,
    ∴∠ADO=∠OEB=90°,
    ∴∠AOD+∠DAO=90°,AD=,
    ∵∠AOD+∠EOB=90°,
    ∴∠DAO=∠EOB,
    在△OAD和△BOE中,

    ∴△OAD≌△BOE(AAS)
    ∴AD=OE=8,
    ∴DE=OE-OD=8-6=2.
    故答案为:C
    【分析】由OA=10可得A(10,0),把(10,0)代入y=-x+b中得b=10,即得y=﹣x+10,从而求出B(0,10),即得OB=10,证明△OAD≌△BOE(AAS),可得AD=OE=8,从而求出DE=OE-OD=2.
    9.【答案】C
    【解析】【解答】解:∵直线y=-4x-6经过点(m,n),
    ∴n=-4m-6.
    ∴.
    ∵2m-7n≤0,
    ∴,.
    ∴,.
    ∴,n可能是正数,0或者负数.
    ∵2m-7n≤0,
    ∴.
    ∴.
    故答案为:C.
    【分析】先将点(m,n)代入y=-4x-6可得,再结合2m-7n≤0可得,,求出m、n的取值范围,再结合2m-7n≤0,可得。
    10.【答案】B
    【解析】【解答】解:设y=kx+b,
    根据题意,得

    解得,
    故解析式为y=,
    当x=15时,
    y=59,
    故答案为:B.
    【分析】先利用待定系数法求出一次函数解析式,再将x=15代入计算即可。
    11.【答案】(1)(0,-4)
    (2)
    【解析】【解答】解:解(1)当时,,
    ∴B点的坐标为(0,4),
    ∴,
    当时,,
    ∴A点的坐标为(3,0),
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴点D的坐标是(0,4).
    故答案为:(0,4)
    (2)设CD的解析式为,
    ∵CD由AB平移得到,
    ∴,
    ∴,
    将D(0,-4)代入得:,
    ∴CD的解析式为.
    故答案为:
    【分析】(1)先利用勾股定理求出AB的长,再利用求出BD的长,即可得到,从而得到点D的坐标是(0,4);
    (2)设CD的解析式为,再将点D的坐标代入求出b的值即可。
    12.【答案】-1

    相关试卷

    专题12 一次函数 中考数学一轮复习专题训练(北京专用):

    这是一份专题12 一次函数 中考数学一轮复习专题训练(北京专用),共25页。试卷主要包含了单选题,填空题,综合题等内容,欢迎下载使用。

    中考数学一轮复习考点题型归纳与分层训练专题12 一次函数(2份打包,原卷版+解析版):

    这是一份中考数学一轮复习考点题型归纳与分层训练专题12 一次函数(2份打包,原卷版+解析版),文件包含中考数学一轮复习考点题型归纳与分层训练专题12一次函数原卷版doc、中考数学一轮复习考点题型归纳与分层训练专题12一次函数含解析doc等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。

    2023年中考数学一轮复习专题训练:一次函数的性质(含答案):

    这是一份2023年中考数学一轮复习专题训练:一次函数的性质(含答案),共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map