所属成套资源:浙教版数学八上题型分类训练专题 (2份,原卷版+解析版)
浙教版数学八上题型分类训练专题4.4 图形与坐标章末题型过关卷(2份,原卷版+解析版)
展开
这是一份浙教版数学八上题型分类训练专题4.4 图形与坐标章末题型过关卷(2份,原卷版+解析版),文件包含浙教版数学八上题型分类训练专题44图形与坐标章末题型过关卷原卷版doc、浙教版数学八上题型分类训练专题44图形与坐标章末题型过关卷解析版doc等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
第4章 图形与坐标章末题型过关卷【浙教版】考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2022春•饶平县校级期末)已知直角坐标系中,点P(x,y)满足(5x+2y﹣12)2+|3x+2y﹣6|=0,则点P坐标为( )A.(3,﹣1.5) B.(﹣3,﹣1.5) C.(﹣2,﹣3) D.(2,﹣3)2.(3分)(2022春•龙湖区期末)如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是( )A.(1,0) B.(1,2) C.(2,1) D.(1,1)3.(3分)(2022春•饶平县校级期末)已知m为任意实数,则点A(m,m2+1)不在( )A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限4.(3分)(2022春•自贡期末)运算能力是一项重要的数学能力.兵老师为帮助学生诊断和改进运算中的问题,对全班学生进行了三次运算测试(每次测验满分均为100分).小明和小军同学帮助兵老师统计了某数学小组5位同学(A,B,C,D,E)的三次测试成绩,小明在下面两个平面直角坐标系里描述5位同学的相关成绩.小军仔细核对所有数据后发现,图1中所有同学的成绩坐标数据完全正确,而图2中只有一个同学的成绩纵坐标数据有误.以下说法中:①A同学第一次成绩50分,第二次成绩40分,第三次成绩60分;②B同学第二次成绩比第三次成绩高;③D同学在图2中的纵坐标是有误的;④E同学每次测验成绩都在95分以上.其中合理的是( )A.①②③ B.①②④ C.①③④ D.②③④5.(3分)(2022春•汉阳区期末)在平面直角坐标系中,将点A(m﹣1,n+2)先向右平移3个单位,再向上平移2个单位,得到点A′.若点A′位于第四象限,则m、n的取值范围分别是( )A.m>0,n<0 B.m>1,n<2 C.m>1,n<0 D.m>﹣2,n<﹣46.(3分)(2022•三门峡二模)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为( )A.(1,﹣2) B.(2,﹣1) C.(,﹣1) D.(3.0)7.(3分)(2022春•洪湖市期末)平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线l∥x轴,点C是直线l上的一个动点,则线段BC的长度最小时,点C的坐标为( )A.(﹣1,4) B.(1,0) C.(1,2) D.(4,2)8.(3分)(2022•丰台区二模)如图,直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p,q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(5,3)的点的个数是( )A.2 B.3 C.4 D.59.(3分)(2022春•江阴市校级期末)我校“心动数学”社团活动小组,在网格纸上为学校的一块空地设计植树方案如下:第k棵树种植在点第xk行yk列处,其中x1=1,y1=1,当k≥2时,,[a]表示非负数a的整数部分,例如[2.6]=2,[0.2]=0.按此方案,第2009棵树种植点所在的行数是4,则所在的列数是( )A.401 B.402 C.2009 D.201010.(3分)(2022春•确山县期末)如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0);第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是( )A.(44,4) B.(44,3) C.(44,5) D.(44,2)二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2022春•增城区期末)在国家体育馆“鸟巢”一侧的座位上,6排3号记为(6,3),则5排8号记为 .12.(3分)(2022春•上蔡县期中)点A(m+3,m+1)在x轴上,则点A坐标为 .13.(3分)(2022春•石城县期末)已知AB∥x轴,A点的坐标为(﹣3,2),并且AB=4,则B点的坐标为 .14.(3分)(2022春•高邑县期末)已知点M到x轴的距离是3,到y轴的距离是4,且点M在第四象限,则点M的坐标是 .15.(3分)(2022秋•高青县期末)在平面直角坐标系xOy中,已知点A(a,﹣1),B(2,3﹣b),C(﹣5,4).若AB∥x轴,AC∥y轴,则a+b= .16.(3分)(2022春•来凤县期末)如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为 .三.解答题(共7小题,满分52分)17.(6分)(2022春•临沭县校级期末)已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.18.(6分)(2022春•罗山县期末)阅读理解,解答下列问题:在平面直角坐标系中,对于点A(x,y)若点B的坐标为(kx+y,x﹣ky),则称点B为A的“k级牵挂点”,如点A(2,5)的“2级牵挂点”为B(2×2+5,2﹣2×5),即B(9,5).(1)已知点P(﹣5,1)的“﹣3级牵挂点”为P1,求点P1的坐标,并写出点P1到x轴的距离;(2)已知点Q的“4级牵挂点”为Q1(5,﹣3),求Q点的坐标及所在象限.19.(8分)(2022春•罗定市期中)小明给右图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化宫、超市、宾馆、市场的坐标;(2)分别指出(1)中每个场所所在象限.20.(8分)(2022春•汝南县期末)如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B与点B′,点C与点C′分别对应,观察点与点坐标之间的关系,解答下列问题.(1)直接写出点A和点A′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的.(2)若点M(a+2,4﹣b)是点N(2a﹣3,2b﹣5)通过(1)中的平移变换得到的,求(b﹣a)2的值.21.(8分)(2022•朝阳区校级开学)我们规定:在平面直角坐标系xOy中,任意不重合的两点M(x1,y1),N(x2,y2)之间的“折线距离”为d(M,N)=|x1﹣x2|+|y1﹣y2|.例如图1中,点M(﹣2,3)与点N(1,﹣1)之间的“折线距离”为d(M,N)=|﹣2﹣1|+|3﹣(﹣1)|=3+4=7.根据上述知识,解决下面问题:(1)已知点P(3,﹣4),在点A(5,2),B(﹣1,0),C(﹣2,1),D(0,1)中,与点P之间的“折线距离”为8的点是 ;(2)如图2,已知点P(3,﹣4),若点Q的坐标为(t,2),且d(P,Q)=10,求t的值;(3)如图2,已知点P(3,﹣4),若点Q的坐标为(t,t+1),且d(P,Q)=8,直接写出t的取值范围.22.(8分)(2022秋•濠江区期末)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C( , ),B→C( , ),C→ (+1, );(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?23.(8分)(2022春•大兴区期末)在平面直角坐标系xOy中,已知点P(a,b),Q(c,d),可以得到线段PQ的中点R的坐标为,将点R向右平移|d|个单位,得到点S,我们称点S为点P关于点Q的中心平移点.例如:P(1,2),Q(2,﹣3),线段PQ的中点R的坐标为(1.5,﹣0.5),点P关于点Q的中心平移点S的坐标为(4.5,﹣0.5).(1)已知A(﹣3,1),B(1,3),①点A关于点B的中心平移点的坐标为 ;②若点A为点B关于点C的中心平移点,求点C的坐标;(2)已知点D(n,n),E(2n,0)(n≠0),将点E向左平移1个单位得到点F,将点E向右平移4个单位得到点G,分别过点E与点G作垂直于x轴的直线l1与l2.若点M在线段EF上,点M关于点D的中心平移点在直线l1与直线l2之间(不含l1,l2),直接写出n的取值范围.