年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    (江苏专用)中考数学真题分项汇编专题04函数与一次函数(共27题)(2份,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      (江苏专用)中考数学真题分项汇编专题04函数与一次函数(共27题)(原卷版).doc
    • 解析
      (江苏专用)中考数学真题分项汇编专题04函数与一次函数(共27题)(解析版).doc
    (江苏专用)中考数学真题分项汇编专题04函数与一次函数(共27题)(原卷版)第1页
    (江苏专用)中考数学真题分项汇编专题04函数与一次函数(共27题)(原卷版)第2页
    (江苏专用)中考数学真题分项汇编专题04函数与一次函数(共27题)(原卷版)第3页
    (江苏专用)中考数学真题分项汇编专题04函数与一次函数(共27题)(解析版)第1页
    (江苏专用)中考数学真题分项汇编专题04函数与一次函数(共27题)(解析版)第2页
    (江苏专用)中考数学真题分项汇编专题04函数与一次函数(共27题)(解析版)第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (江苏专用)中考数学真题分项汇编专题04函数与一次函数(共27题)(2份,原卷版+解析版)

    展开

    这是一份(江苏专用)中考数学真题分项汇编专题04函数与一次函数(共27题)(2份,原卷版+解析版),文件包含江苏专用中考数学真题分项汇编专题04函数与一次函数共27题原卷版doc、江苏专用中考数学真题分项汇编专题04函数与一次函数共27题解析版doc等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
    A.第一象限B.第二象限C.第三象限D.第四象限
    【分析】根据平方数非负数判断出点P的纵坐标是正数,再根据各象限内点的坐标特征解答.
    【解答】解:∵a2≥0,
    ∴a2+1≥1,
    ∴点P(﹣3,a2+1)所在的象限是第二象限.
    故选:B.
    2.(2022•常州)某城市市区人口x万人,市区绿地面积50万平方米,平均每人拥有绿地y平方米,则y与x之间的函数表达式为( )
    A.y=x+50B.y=50xC.y=D.y=
    【分析】根据题意列出函数关系式即可得出答案.
    【解答】解:由城市市区人口x万人,市区绿地面积50万平方米,
    则平均每人拥有绿地y=.
    故选:C.
    3.(2022•连云港)函数y=中自变量x的取值范围是( )
    A.x≥1B.x≥0C.x≤0D.x≤1
    【分析】根据二次根式的被开方数是非负数即可得出答案.
    【解答】解:∵x﹣1≥0,
    ∴x≥1.
    故选:A.
    4.(2022•无锡)函数y=中自变量x的取值范围是( )
    A.x>4B.x<4C.x≥4D.x≤4
    【分析】因为当函数用二次根式表达时,被开方数为非负数,所以4﹣x≥0,可求x的范围.
    【解答】解:4﹣x≥0,
    解得x≤4,
    故选:D.
    5.(2022•南通)根据图象,可得关于x的不等式kx>﹣x+3的解集是( )
    A.x<2B.x>2C.x<1D.x>1
    【分析】先根据函数图象得出交点坐标,根据交点的坐标和图象得出即可.
    【解答】解:根据图象可知:两函数图象的交点为(1,2),
    所以关于x的一元一次不等式kx>﹣x+3的解集为x>1,
    故选:D.
    6.(2022•无锡)一次函数y=mx+n的图象与反比例函数y=的图象交于点A、B,其中点A、B的坐标为A(﹣,﹣2m)、B(m,1),则△OAB的面积是( )
    A.3B.C.D.
    【分析】根据反比例函数图象上点的坐标特征求出m,进而求出点A、B的坐标,根据三角形的面积公式计算即可.
    【解答】解:∵点A(﹣,﹣2m)在反比例函数y=上,
    ∴﹣2m=,
    解得:m=2,
    ∴点A的坐标为:(﹣,﹣4),点B的坐标为(2,1),
    ∴S△OAB=××5﹣××4﹣×2×1﹣×1=,
    故选:D.
    7.(2022•宿迁)如图,点A在反比例函数y=(x>0)的图象上,以OA为一边作等腰直角三角形OAB,其中∠OAB=90°,AO=AB,则线段OB长的最小值是( )
    A.1B.C.2D.4
    【分析】根据三角形OAB是等腰直角三角形,当OB最小时,OA最小,再根据两点间的距离公式解答即可.
    【解答】解:∵三角形OAB是等腰直角三角形,
    ∴当OB最小时,OA最小,
    设A点坐标为(a,),
    ∴OA=,
    ∵≥0,
    即:﹣4≥0,
    ∴≥4,
    ∵≥0,
    两边同时开平方得:a﹣=0,
    ∴当a=时,OA有最小值,
    解得a1=,a2=﹣(舍去),
    ∴A点坐标为(,),
    ∴OA=2,
    ∵三角形OAB是等腰直角三角形,OB为斜边,
    ∴OB=OA=2.
    故选:C.
    8.(2022•扬州)某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞赛人数x的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是( )
    A.甲B.乙C.丙D.丁
    【分析】根据题意可知xy的值即为该校的优秀人数,再根据图象即可确定丙校的优秀人数最多.
    【解答】解:根据题意,可知xy的值即为该校的优秀人数,
    ∵描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,
    ∴乙、丁两所学校的优秀人数相同,
    ∵点丙在反比例函数图象上面,
    ∴丙校的xy的值最大,即优秀人数最多,
    故选:C.
    二.填空题(共10小题)
    9.(2022•无锡)请写出一个函数的表达式,使其图象分别与x轴的负半轴、y轴的正半轴相交: y=x+1(答案不唯一) .
    【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图象分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.
    【解答】解:设一次函数的解析式为y=kx+b(k≠0),
    ∵一次函数的图象分别与x轴的负半轴、y轴的正半轴相交,
    ∴k>0,b>0,
    ∴符合条件的函数解析式可以为:y=x+1(答案不唯一).
    故答案为:y=x+1(答案不唯一).
    10.(2022•泰州)一次函数y=ax+2的图象经过点(1,0).当y>0时,x的取值范围是 x<1 .
    【分析】由待定系数法可求得一次函数的解析式,再结合图象即可得出答案.
    【解答】解:将点(1,0)代入y=ax+2,
    得a+2=0,
    解得a=﹣2,
    ∴一次函数解析式为y=﹣2x+2,
    如图,
    ∴当y>0时,x<1.
    故答案为:x<1.
    11.(2022•盐城)《庄子•天下篇》记载“一尺之棰,日取其半,万世不竭”.如图,直线l1:y=x+1与y轴交于点A,过点A作x轴的平行线交直线l2:y=x于点O1,过点O1作y轴的平行线交直线l1于点A1,以此类推,令OA=a1,O1A1=a2,…,On﹣1An﹣1=an,若a1+a2+…+an≤S对任意大于1的整数n恒成立,则S的最小值为 2 .
    【分析】由直线l1的解析式求得A,即可求得a1,把A的坐标代入y=x求得O1的坐标,进而求得A1的坐标,即可求得a2,把A1的纵坐标代入y=x求得O2的坐标,进而求得A2的坐标,即可求得a3,…,得到规律,即可求得On﹣1An﹣1=an=()n﹣1,根据a1+a2+…+an≤S对任意大于1的整数n恒成立,则S的最小值为2.
    【解答】解:把x=0代入y=x+1得,y=1,
    ∴A(0,1),
    ∴OA=a1=1,
    把y=1代入y=x得,x=1,
    ∴O1(1,1),
    把x=1代入y=x+1得,y=×1+1=,
    ∴A1(1,),
    ∴O1A1=a2=﹣1=,
    把y=代入y=x得,y=,
    ∴O2(,),
    把x=代入y=x+1得,y=×+1=,
    ∴A2(,),
    ∴O2A2=a3=﹣=,
    …,
    ∴On﹣1An﹣1=an=()n﹣1,
    ∵a1+a2+…+an≤S对任意大于1的整数n恒成立,
    ∴S的最小,
    ∵S≥a1+a2+…+an=1+++…+=1+1﹣+﹣+…+﹣=2﹣,
    ∴S的最小值为2,
    故答案为:2.
    12.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图象经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是 y=﹣x+2(答案不唯一) .
    【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.
    【解答】解:∵函数值y随自变量x增大而减小,且该函数图象经过点(0,2),
    ∴该函数为一次函数.
    设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.
    取k=﹣1,此时一次函数的表达式为y=﹣x+2.
    故答案为:y=﹣x+2(答案不唯一).
    13.(2022•苏州)一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为 .
    【分析】设出水管每分钟排水x升.由题意进水管每分钟进水10升,则有80﹣5x=20,求出x,再求出8分钟后的放水时间,可得结论.
    【解答】解:设出水管每分钟排水x升.
    由题意进水管每分钟进水10升,
    则有80﹣5x=20,
    ∴x=12,
    ∵8分钟后的放水时间==,8+=,
    ∴a=,
    故答案为:.
    14.(2022•扬州)如图,函数y=kx+b(k<0)的图象经过点P,则关于x的不等式kx+b>3的解集为 x<﹣1 .
    【分析】根据函数图象中的数据和一次函数的性质,可以写出等式kx+b>3的解集.
    【解答】解:由图象可得,
    当x=﹣1时,y=3,该函数y随x的增大而减小,
    ∴不等式kx+b>3的解集为x<﹣1,
    故答案为:x<﹣1.
    15.(2022•淮安)在平面直角坐标系中,将点A(2,3)向下平移5个单位长度得到点B,若点B恰好在反比例函数y=的图象上,则k的值是 ﹣4 .
    【分析】点A(2,3)向下平移5个单位长度得到点B(2,﹣2),代入y=利用待定系数法即可求得k的值.
    【解答】解:将点A(2,3)向下平移5个单位长度得到点B,则B(2,﹣2),
    ∵点B恰好在反比例函数y=的图像上,
    ∴k=2×(﹣2)=﹣4,
    故答案为:﹣4.
    16.(2022•镇江)反比例函数y=(k≠0)的图象经过A(x1,y1)、B(x2,y2)两点,当x1<0<x2时,y1>y2,写出符合条件的k的值 ﹣1 (答案不唯一,写出一个即可).
    【分析】先根据已知条件判断出函数图象所在的象限,再根据系数k与函数图象的关系解答即可.
    【解答】解:∵反比例函数y=(k≠0)的图像经过A(x1,y1)、B(x2,y2)两点,当x1<0<x2时,y1>y2,
    ∴此反比例函数的图象在二、四象限,
    ∴k<0,
    ∴k可为小于0的任意实数,例如,k=﹣1等.
    故答案为:﹣1.
    17.(2022•南通)平面直角坐标系xOy中,已知点A(m,6m),B(3m,2n),C(﹣3m,﹣2n)是函数y=(k≠0)图象上的三点.若S△ABC=2,则k的值为 .
    【分析】连接OA,作AD⊥x轴于D,BE⊥x轴于E,由B、C点的坐标可知B、C关于原点对称,则BO=CO,即可求得S△AOB=1,根据反比例函数系数k的几何意义得出S△AOB=S梯形ADEB+S△AOD﹣S△BOE=S梯形ADEB,即可得出|6n+2m|•|3m﹣m|=1,求得m2=,由于k=6m2,即可求得k=.
    【解答】解:如图,连接OA,作AD⊥x轴于D,BE⊥x轴于E,
    ∵点A(m,6m),B(3m,2n),C(﹣3m,﹣2n)是函数y=(k≠0)图象上的三点.
    ∴k=6m2=6mn,
    ∴n=m,
    ∴B(3m,2m),C(﹣3m,﹣2m),
    ∴B、C关于原点对称,
    ∴BO=CO,
    ∵S△ABC=2,
    ∴S△AOB=1,
    ∵S△AOB=S梯形ADEB+S△AOD﹣S△BOE=S梯形ADEB,
    ∴|6m+2m|•|3m﹣m|=1,
    ∴m2=,
    ∵k=6×,
    ∴k=,
    故答案为:.
    18.(2022•盐城)已知反比例函数的图象经过点(2,3),则该函数表达式为 y= .
    【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可.
    【解答】解:令反比例函数为y=(k≠0),
    ∵反比例函数的图象经过点(2,3),
    ∴3=,
    k=6,
    ∴反比例函数的解析式为y=.
    故答案为:y=.
    三.解答题(共9小题)
    19.(2022•盐城)小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发.两人离甲地的距离y(m)与出发时间x(min)之间的函数关系如图所示.
    (1)小丽步行的速度为 80 m/min;
    (2)当两人相遇时,求他们到甲地的距离.
    【分析】(1)用路程除以速度即可得小丽步行的速度;
    (2)求出小华的速度,即可求出两人相遇所需的时间,进而可得小丽所走路程,即是他们到甲地的距离.
    【解答】解:(1)由图象可知,小丽步行的速度为=80(m/min),
    故答案为:80;
    (2)由图象可得,小华骑自行车的速度是=120(m/min),
    ∴出发后需要=12(min)两人相遇,
    ∴相遇时小丽所走的路程为12×80=960(m),
    即当两人相遇时,他们到甲地的距离是960m.
    20.(2022•南通)某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.
    (1)写出图中点B表示的实际意义;
    (2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;
    (3)若不计损耗等因素,当甲、乙两种苹果的销售量均为akg时,它们的利润和为1500元,求a的值.
    【分析】(1)根据图形即可得出结论;
    (2)用待定那个系数法分别求出甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式即可;
    (3)分0≤a≤30和30<a≤120两种情况列方程求解即可.
    【解答】解:(1)图中点B表示的实际意义为当销量为60kg时,甲、乙两种苹果的销售额均为1200元;
    (2)设甲种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y甲=kx(k≠0),
    把(60,1200)代入解析式得:1200=60k,
    解得k=20,
    ∴甲种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y甲=20x(0≤x≤120);
    当0≤x≤30时,设乙种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y乙=k′x(k′≠0),
    把(30,750)代入解析式得:750=30k′,
    解得:k′=25,
    ∴y乙=25x;
    当30≤x≤120时,设乙种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y乙=mx+n(m≠0),
    则,
    解得:,
    ∴y乙=15x+300,
    综上,乙种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式为y乙=;
    (3)①当0≤a≤30时,
    根据题意得:(20﹣8)a+(25﹣12)a=1500,
    解得:a=60>30,不合题意;
    ②当30<a≤120时,
    根据题意得:(20﹣8)a+(15﹣12)a+300=1500,
    解得:a=80,
    综上,a的值为80.
    21.(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc≠0)为函数y1、y2的“组合函数”.
    (1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;
    (2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.
    ①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;
    ②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.
    【分析】(1)由y=5x+2=3(x+1)+(2x﹣1),可知函数y=5x+2是函数y1=x+1、y2=2x﹣1的“组合函数”;
    (2)①由得P(2p+1,p﹣1),当x=2p+1时,y=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p)=(p﹣1)(m+n),根据点P在函数y1、y2的“组合函数”图象的上方,有p﹣1>(p﹣1)(m+n),而m+n>1,可得p<1;
    ②由函数y1、y2的“组合函数”y=m(x﹣p﹣2)+n(﹣x+3p)图象经过点P,知p﹣1=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p),即(p﹣1)(1﹣m﹣n)=0,而p≠1,即得n=1﹣m,可得y=(2m﹣1)x+3p﹣(4p+2)m,令y=0得(2m﹣1)x+3p﹣(4p+2)m=0,即(3﹣4m)p+(2m﹣1)x﹣2m=0,即可得m=时,“组合函数”图象与x轴交点Q的位置不变,Q(3,0).
    【解答】解:(1)函数y=5x+2是函数y1=x+1、y2=2x﹣1的“组合函数”,理由如下:
    ∵3(x+1)+(2x﹣1)=3x+3+2x﹣1=5x+2,
    ∴y=5x+2=3(x+1)+(2x﹣1),
    ∴函数y=5x+2是函数y1=x+1、y2=2x﹣1的“组合函数”;
    (2)①由得,
    ∴P(2p+1,p﹣1),
    ∵y1、y2的“组合函数”为y=m(x﹣p﹣2)+n(﹣x+3p),
    ∴x=2p+1时,y=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p)=(p﹣1)(m+n),
    ∵点P在函数y1、y2的“组合函数”图象的上方,
    ∴p﹣1>(p﹣1)(m+n),
    ∴(p﹣1)(1﹣m﹣n)>0,
    ∵m+n>1,
    ∴1﹣m﹣n<0,
    ∴p﹣1<0,
    ∴p<1;
    ②存在m=时,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变,Q(3,0),理由如下:
    由①知,P(2p+1,p﹣1),
    ∵函数y1、y2的“组合函数”y=m(x﹣p﹣2)+n(﹣x+3p)图象经过点P,
    ∴p﹣1=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p),
    ∴(p﹣1)(1﹣m﹣n)=0,
    ∵p≠1,
    ∴1﹣m﹣n=0,有n=1﹣m,
    ∴y=m(x﹣p﹣2)+n(﹣x+3p)=m(x﹣p﹣2)+(1﹣m)(﹣x+3p)=(2m﹣1)x+3p﹣(4p+2)m,
    令y=0得(2m﹣1)x+3p﹣(4p+2)m=0,
    变形整理得:(3﹣4m)p+(2m﹣1)x﹣2m=0,
    ∴当3﹣4m=0,即m=时,x﹣=0,
    ∴x=3,
    ∴m=时,“组合函数”图象与x轴交点Q的位置不变,Q(3,0).
    22.(2022•苏州)某水果店经销甲、乙两种水果,两次购进水果的情况如表所示:
    (1)求甲、乙两种水果的进价;
    (2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值.
    【分析】(1)设甲种水果的进价为每千克a元,乙种水果的进价为每千克b元.构建方程组求解;
    (2)设第三次购进x千克甲种水果,则购进(200﹣x)千克乙种水果.由题意,得12x+20(200﹣x)≤3360,解得x≥80.设获得的利润为w元,由题意,得w=(17﹣12)×(x﹣m)+(30﹣20)×(200﹣x﹣3m)=﹣5x﹣35m+2000,利用一次函数的性质求解.
    【解答】解:(1)设甲两种水果的进价为每千克a元,乙两种水果的进价为每千克b元.
    由题意,得,
    解得,
    答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元.
    (2)设第三次购进x千克甲种水果,则购进(200﹣x)千克乙种水果.
    由题意,得12x+20(200﹣x)≤3360,
    解得x≥80.
    设获得的利润为w元,
    由题意,得w=(17﹣12)×(x﹣m)+(30﹣20)×(200﹣x﹣3m)=﹣5x﹣35m+2000,
    ∵﹣5<0,
    ∴w随x的增大而减小,
    ∴x=80时,w的值最大,最大值为﹣35m+1600,
    由题意,得﹣35m+1600≥800,
    解得m≤,
    ∴m的最大整数值为22.
    23.(2022•徐州)如图,一次函数y=kx+b(k>0)的图象与反比例函数y=(x>0)的图象交于点A,与x轴交于点B,与y轴交于点C,AD⊥x轴于点D,CB=CD,点C关于直线AD的对称点为点E.
    (1)点E是否在这个反比例函数的图象上?请说明理由;
    (2)连接AE、DE,若四边形ACDE为正方形.
    ①求k、b的值;
    ②若点P在y轴上,当|PE﹣PB|最大时,求点P的坐标.
    【分析】(1)设点A的坐标为(m,),根据轴对称的性质得到AD⊥CE,AD平分CE,如图,连接CE交AD于H,得到CH=EH,求得E(2m,),于是得到点E在这个反比例函数的图象上;
    (2)①根据正方形的性质得到AD=CE,AD垂直平分CE,求得CH=AD,设点A的坐标为(m,),得到m=2(负值舍去),求得A(2,4),C(0,2),把A(2,4),C(0,2)代入y=kx+b得,解方程组即可得到结论;
    ②延长ED交y轴于P,根据已知条件得到点B与点D关于y轴对称,求得|PE﹣PD|=|PE﹣PB|,则点P即为符合条件的点,求得直线DE的解析式为y=x﹣2,于是得到结论.
    【解答】解:(1)点E在这个反比例函数的图象上,
    理由:∵一次函数y=kx+b(k>0)的图象与反比例函数y=(x>0)的图象交于点A,
    ∴设点A的坐标为(m,),
    ∵点C关于直线AD的对称点为点E,
    ∴AD⊥CE,AD平分CE,
    如图.连接CE交AD于H,
    ∴CH=EH,
    ∵BC=CD,OC⊥BD,
    ∴OB=OD,
    ∴OC=AD,
    ∵AD⊥x轴于D,
    ∴CE∥x轴,
    ∴E(2m,),
    ∵2m×=8,
    ∴点E在这个反比例函数的图象上;
    (2)①∵四边形ACDE为正方形,
    ∴AD=CE,AD垂直平分CE,
    ∴CH=AD,
    设点A的坐标为(m,),
    ∴CH=m,AD=,
    ∴m=×,
    ∴m=2(负值舍去),
    ∴A(2,4),C(0,2),
    把A(2,4),C(0,2)代入y=kx+b得,
    ∴;
    ②延长ED交y轴于P,
    ∵CB=CD,OC⊥BD,
    ∴点B与点D关于y轴对称,
    ∴|PE﹣PD|=|PE﹣PB|,
    则点P即为符合条件的点,
    由①知,A(2,4),C(0,2),
    ∴D(2,0),E(4,2),
    设直线DE的解析式为y=ax+n,
    ∴,
    ∴,
    ∴直线DE的解析式为y=x﹣2,
    当x=0时,y=﹣2,
    ∴P(0,﹣2).
    故当|PE﹣PB|最大时,点P的坐标为(0,﹣2).
    24.(2022•镇江)如图,一次函数y=2x+b与反比例函数y=(k≠0)的图象交于点A(1,4),与y轴交于点B.
    (1)k= 4 ,b= 2 ;
    (2)连接并延长AO,与反比例函数y=(k≠0)的图象交于点C,点D在y轴上,若以O、C、D为顶点的三角形与△AOB相似,求点D的坐标.
    【分析】(1)将点A(1,4)分别代入反比例函数y=(k≠0)和一次函数y=2x+b的解析式中,求解即可;
    (2)根据题意,需要分类讨论:当点D落在y轴的正半轴上,当点D落在y轴的负半轴上,△COD∽△AOB或△COD∽△BOA,依次根据比例关系,求解即可.
    【解答】解:(1)将点A(1,4)代入反比例函数y=(k≠0)的解析式中,
    ∴k=1×4=4;
    将A(1,4)代入一次函数y=2x+b,
    ∴2×1+b=4,
    解得b=2.
    故答案为:4;2.
    (2)当点D落在y轴的正半轴上,
    则∠COD>∠ABO,
    ∴△COD与△ABO不可能相似.
    当点D落在y轴的负半轴上,
    若△COD∽△AOB,
    ∵CO=AO,BO=DO=2,
    ∴D(0,﹣2).
    若△COD∽△BOA,则OD:OA=OC:OB,
    ∵OA=CO=,BO=2,
    ∴DO=,
    ∴D(0,﹣),
    综上所述:点D的坐标为(0,﹣2),(0,﹣).
    25.(2022•常州)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图象分别与x轴、y轴交于点A、B,与反比例函数y=(x>0)的图象交于点C,连接OC.已知点B(0,4),△BOC的面积是2.
    (1)求b、k的值;
    (2)求△AOC的面积.
    【分析】(1)由点B(0,4)在一次函数y=2x+b的图象上,代入求得b=4,由△BOC的面积是2得出C的横坐标为1,代入直线关系式即可求出C的坐标,从而求出k的值;
    (2)根据一次函数的解析式求得A的坐标,然后根据三角形的面积公式代入计算即可.
    【解答】解:(1)∵一次函数y=2x+b的图象过点B(0,4),
    ∴b=4,
    ∴一次函数为y=2x+4,
    ∵OB=4,△BOC的面积是2.
    ∴OB•xC=2,即=2,
    ∴xC=1,
    把x=1代入y=2x+4得,y=6,
    ∴C(1,6),
    ∵点C在反比例函数y=(x>0)的图象上,
    ∴k=1×6=6;
    (2)把y=0代入y=2x+4得,2x+4=0,解得x=﹣2,
    ∴A(﹣2,0),
    ∴OA=2,
    ∴S△AOC==6.
    26.(2022•苏州)如图,一次函数y=kx+2(k≠0)的图象与反比例函数y=(m≠0,x>0)的图象交于点A(2,n),与y轴交于点B,与x轴交于点C(﹣4,0).
    (1)求k与m的值;
    (2)P(a,0)为x轴上的一动点,当△APB的面积为时,求a的值.
    【分析】(1)把点C的坐标代入一次函数的解析式求出k,再求出点A的坐标,把点A的坐标代入反比例函数的解析式中,可得结论;
    (2)根据S△CAP=S△ABP+S△CBP,构建方程求解即可.
    【解答】解:(1)把C(﹣4,0)代入y=kx+2,得k=,
    ∴y=x+2,
    把A(2,n)代入y=x+2,得n=3,
    ∴A(2,3),
    把A(2,3)代入y=,得m=6,
    ∴k=,m=6;
    (2)当x=0时,y=2,
    ∴B(0,2),
    ∵P(a,0)为x轴上的动点,
    ∴PC=|a+4|,
    ∴S△CBP=•PC•OB=×|a+4|×2=|a+4|,S△CAP=PC•yA=×|a+4|×3,
    ∵S△CAP=S△ABP+S△CBP,
    ∴|a+4|=+|a+4|,
    ∴a=3或﹣11.
    27.(2022•连云港)如图,在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于P、Q两点.点P(﹣4,3),点Q的纵坐标为﹣2.
    (1)求反比例函数与一次函数的表达式;
    (2)求△POQ的面积.
    【分析】(1)把P的坐标代入y=,利用待定系数法即可求得反比例函数解析式,进而求出Q的坐标,把P、Q的坐标代入一次函数的解析式求出即可;
    (2)根据三角形面积和可得结论.
    【解答】解:(1)将点P(﹣4,3)代入反比例函数y=中,解得:k=﹣4×3=﹣12,
    ∴反比例函数的表达式为:y=﹣;
    当y=﹣2时,﹣2=﹣,
    ∴x=6,
    ∴Q(6,﹣2),
    将点P(﹣4,3)和Q(6,﹣2)代入y=ax+b中得:,
    解得:,
    ∴一次函数的表达式为:y=﹣x+1;
    (2)如图,
    y=﹣x+1,
    当x=0时,y=1,
    ∴OM=1,
    ∴S△POQ=S△POM+S△OMQ
    =×1×4+×1×6
    =2+3
    =5.
    进货批次
    甲种水果质量
    (单位:千克)
    乙种水果质量
    (单位:千克)
    总费用
    (单位:元)
    第一次
    60
    40
    1520
    第二次
    30
    50
    1360

    相关试卷

    (江苏专用)中考数学真题分项汇编专题12概率(共17题)(2份,原卷版+解析版):

    这是一份(江苏专用)中考数学真题分项汇编专题12概率(共17题)(2份,原卷版+解析版),文件包含江苏专用中考数学真题分项汇编专题12概率共17题原卷版doc、江苏专用中考数学真题分项汇编专题12概率共17题解析版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    (江苏专用)中考数学真题分项汇编专题11统计(共27题)(2份,原卷版+解析版):

    这是一份(江苏专用)中考数学真题分项汇编专题11统计(共27题)(2份,原卷版+解析版),文件包含江苏专用中考数学真题分项汇编专题11统计共27题原卷版doc、江苏专用中考数学真题分项汇编专题11统计共27题解析版doc等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    (江苏专用)中考数学真题分项汇编专题10圆(共35题)(2份,原卷版+解析版):

    这是一份(江苏专用)中考数学真题分项汇编专题10圆(共35题)(2份,原卷版+解析版),文件包含江苏专用中考数学真题分项汇编专题10圆共35题原卷版doc、江苏专用中考数学真题分项汇编专题10圆共35题解析版doc等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map