年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    人教版数学八上期末重难点提分训练专题13 分式方程的应用题重难点题型分类(2份,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      人教版数学八上期末重难点提分训练专题13 分式方程的应用题重难点题型分类(原卷版).doc
    • 解析
      人教版数学八上期末重难点提分训练专题13 分式方程的应用题重难点题型分类(解析版).doc
    人教版数学八上期末重难点提分训练专题13 分式方程的应用题重难点题型分类(原卷版)第1页
    人教版数学八上期末重难点提分训练专题13 分式方程的应用题重难点题型分类(原卷版)第2页
    人教版数学八上期末重难点提分训练专题13 分式方程的应用题重难点题型分类(原卷版)第3页
    人教版数学八上期末重难点提分训练专题13 分式方程的应用题重难点题型分类(解析版)第1页
    人教版数学八上期末重难点提分训练专题13 分式方程的应用题重难点题型分类(解析版)第2页
    人教版数学八上期末重难点提分训练专题13 分式方程的应用题重难点题型分类(解析版)第3页
    还剩8页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版数学八上期末重难点提分训练专题13 分式方程的应用题重难点题型分类(2份,原卷版+解析版)

    展开

    这是一份人教版数学八上期末重难点提分训练专题13 分式方程的应用题重难点题型分类(2份,原卷版+解析版),文件包含人教版数学八上期末重难点提分训练专题13分式方程的应用题重难点题型分类原卷版doc、人教版数学八上期末重难点提分训练专题13分式方程的应用题重难点题型分类解析版doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
    题型一:商品购买类(考查次数最多)
    解题思路:已知总金额,设A单价为x,并表示出B单价,用总金额除以单价表示出A、B
    的数量,用题目中给出的数量关系列方程
    1.(2022·深圳)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.
    (1)求甲、乙两种树苗每棵的价格各是多少元?
    (2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
    2.(2021·株洲)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
    (1)第一批饮料进货单价多少元?
    (2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
    3.(2022·广东)“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:
    (1)A型自行车去年每辆售价多少元;
    (2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.
    4.(2022·江苏)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.
    (1)A,B两种茶叶每盒进价分别为多少元?
    (2)第一次所购茶叶全部售完后第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?
    5.(2020·广东)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.
    (1)求第一批悠悠球每套的进价是多少元;
    (2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?
    6.(2022·安徽)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.
    (1)求甲、乙两种粽子的单价分别是多少元?
    (2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?
    题型二: 抽象工程问题类
    解题思路:已知工作总量为1,设某一队的工作时间为x,并表示出另一队的工作时间,用1
    除以工作时间表示出两队的工作效率,用“甲队的工作效率×工作时间+乙队的工作效率×工
    作时间=1”来列方程.
    7.(2022·四川)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
    (1)乙队单独完成这项工程需要多少天?
    (2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
    8.(2022·陕西)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用天时间完成整个工程.当一号施工队工作天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.
    (1)若二号施工队单独施工,完成整个工程需要多少天?
    (2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?
    9.(2020·四川)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程一项地基基础加固处理工程由2、8两个工程公司承担建设,已知2工程公司单独建设完成此项工程需要180天工程公司单独施工45天后,工程公司参与合作,两工程公司又共同施工天后完成了此项工程.
    (1)求工程公司单独建设完成此项工程需要多少天?
    (2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,工程公司建设其中一部分用了天完成,工程公司建设另一部分用了天完成,其中,均为正整数,且,,求、两个工程公司各施工建设了多少天?
    10.(2019·云南)某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:
    (1)甲队单独完成这项工程刚好如期完成;
    (2)乙队单独完成这项工程要比规定日期多用5天;
    (3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.
    据上述条件解决下列问题:
    ①规定期限是多少天?写出解答过程;
    ②在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?
    11.(2022·重庆)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.
    (1)甲、乙两队单独完成此项任务各需多少天?
    (2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?
    12.(2019·四川)在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.
    (1)求甲、乙两队单独完成这项工程各需多少天?
    (2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?
    题型三:具体工程类
    解题思路:已知工作总量,设某一队的速度x,并表示出另一队的速度,用工作总量除以工
    作速度表示出两队的工作时间,用题目中给出的时间关系来列方程.
    13.(2019·广西)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
    (1)甲、乙两工程队每天能改造道路的长度分别是多少米?
    (2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
    14.(2022·云南)在“旅游示范公路”建设的的中,工程队计划在海边某路段修建一条长的步行道,由于采用新的施工方式平均每天修建步行道的长度是计划的倍,结果提前天完成任务,求计划平均每天修建的长度.
    15.(2022·福建)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的 1.5 倍,两人各加工 600 个这种零件,甲比乙少用 5 天.
    (1)求甲、乙两人每天各加工多少个这种零件?
    (2)已知甲、乙两人加工这种零件每天的加工费分别是 150 元和 120 元,现有 3000 个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过 7800 元,那么甲至少加工了多少天?
    16.(2022·河南)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.
    (1)求原计划每天生产的零件个数和规定的天数.
    (2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.
    17.(2019·江西)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.
    (1)求乙队筑路的总公里数;
    (2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.
    18.(2022·黑龙江)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.
    (1)求甲、乙两个工程队每天各修路多少千米?
    (2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?
    题型四:路程问题类
    解题思路:已知路程,设某车的速度x,并表示出另车的速度,用路程除以速度表示出两车
    的时间,用题目中给出的时间关系来列方程.
    19.(2021·河南)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.
    20.(2022·山东)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.
    21.(2022·山东烟台)列方程解应用题:
    小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.
    22.(2020·河北)如图,小刚家、王老师家、学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车送小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?
    23.(北雅)甲乙两人分别从相距36千米的A、B两地同时相向而行,甲从A出发到1千米时发现有东西
    遗忘在A地,立即返回,取过东西后又立即从A向B行进,这样两人恰好在AB中点处相遇.已知甲比乙
    每小时多走0.5千米,求二人的速度各是多少?
    24.(师大)农机厂职工到距离工厂15千米的某地检修农机,一部分人骑自行车先走半小时后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,问两种车的速度各是多少千米/小时?

    相关试卷

    人教版数学八上期末重难点提分训练专题12 分式与分式方程重难点题型分类(2份,原卷版+解析版):

    这是一份人教版数学八上期末重难点提分训练专题12 分式与分式方程重难点题型分类(2份,原卷版+解析版),文件包含人教版数学八上期末重难点提分训练专题12分式与分式方程重难点题型分类原卷版doc、人教版数学八上期末重难点提分训练专题12分式与分式方程重难点题型分类解析版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    人教版数学八上期末重难点提分训练专题03全等三角形的性质与判定选择 填空重难点题型分类(2份,原卷版+解析版):

    这是一份人教版数学八上期末重难点提分训练专题03全等三角形的性质与判定选择 填空重难点题型分类(2份,原卷版+解析版),文件包含人教版数学八上期末重难点提分训练专题03全等三角形的性质与判定选择填空重难点题型分类原卷版doc、人教版数学八上期末重难点提分训练专题03全等三角形的性质与判定选择填空重难点题型分类解析版doc等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    人教版数学八上期末重难点提分训练专题02三角形压轴题真题分类(2份,原卷版+解析版):

    这是一份人教版数学八上期末重难点提分训练专题02三角形压轴题真题分类(2份,原卷版+解析版),文件包含人教版数学八上期末重难点提分训练专题02三角形压轴题真题分类原卷版doc、人教版数学八上期末重难点提分训练专题02三角形压轴题真题分类解析版doc等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map