所属成套资源:河北省各地区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
河北省石家庄市藁城区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省石家庄市藁城区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共23页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列图案中,是轴对称图形的是( )
A. B. C. D.
2. 下列运算正确的是( )
A. B. C. D.
3. 刘零想做一个三角形的框架,她有两根长度分别为6cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分成两段的是( )
A. 6cm的木条B. 8cm的木条C. 两根都可以D. 两根都不行
4. 如图,AB=AC,BD⊥AC于D,CE⊥AB于E.BD与CE交于O,连接AO,则图中共有全等的三角形的对数为( )
A. 1对B. 2对C. 3对D. 4对
5. 以下列各组线段的长为边能组成三角形的是( )
A. 2、5、8B. 2、5、3C. 6、6、2D. 9、6、2
6. 如与的乘积中不含的一次项,则的值为( )
A. B. 3C. 0D. 1
7. 下列等式中,不成立的是( )
A. B.
C. D.
8. 如图所示,在△ABC中,,,D是BC的中点,连接AD,,垂足为E,则AE的长为( )
A. 4B. 6C. 2D. 1
9. 中国首列商用磁浮列车平均速度为,计划提速,已知从A地到B地路程为,那么提速后从A地到B地节约的时间为( )
A. B. C. D.
10. 如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A. 60°B. 50°C. 40°D. 30°
11. 如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为( )
A. 2560B. 490C. 70D. 49
12. 如图,在△ABC中,∠B=90°,∠A=30°,AC=a,AB=m,以点C为圆心,CB长为半径画弧交AC于点D,再以点A为圆心,AD长为半径画弧交AB于点E,则BE的长为( )
A. m﹣B. a﹣mC. 2a﹣mD. m﹣a
13. 若关于x的分式方程-2=无解,则m的值为( )
A. 0B. 2C. 0或2D. 无法确定
14. 下列说法中,正确的个数有( )
①若一个多边形的外角和等于360°,则这个多边形的边数为4;
②三角形的高相交于三角形的内部;
③三角形的一个外角大于任意一个内角;
④一个多边形的边数每增加一条,这个多边形的内角和就增加;
⑤对角线共有5条的多边形是五边形.
A. 1个B. 2个C. 3个D. 4个
15. 如图,将长方形ABCD的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形ABCD的面积为( )
A. 4B. C. D. 6
16. 如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中不正确的是( )
A. △ABE≅△ACFB. △BDF≅△CDE
C. 点D在平分线上D. 点D是CF的中点
二.填空题(本大题共3题,总计 12分)
17. 已知点与点关于轴对称,则的值为_________.
18. 在△ABC中,角平分线与边所夹的锐角为,则的度数等于__________.
19. 已知△ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线的对称点为点E.
(1)如图1,连接,,,当时,根据边的关系,可判定的形状是___________三角形;
(2)如图2,当点D在延长线上时,连接,,,,延长到点G,使,连接,交于点F,F为的中点.若,则的长为___________.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. (1)计算:;
(2)因式分解:.
21. 化简:(﹣) ÷ ,并解答:
(1)当x=3时,求原式的值;
(2)原式的值能等于﹣1吗?为什么?
22. 如图1,网格中的每一个正方形的边长为1,△ABC为格点三角形(点A、B、C在小正方形的顶点上),直线m为格点直线(直线m经过小正方形的格点).
(1)如图1,作出△ABC关于直线m轴对称图形△A′B′C′;
(2)如图2,在直线m上找到一点P,使PA+PB的值最小;
(3)如图3,仅用直尺将网格中的格点三角形ABC的面积三等分,并将其中的一份用铅笔涂成阴影.
(4)如图4,仅用直尺作出三角形ABC的边AB上的高,简单说明你的理由.
23. 如图,在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线.
(1)求证:△BCD是等腰三角形;
(2)若△ABD的周长是a,BC=b,求△BCD的周长.(用含a,b的代数式表示)
24. 阅读以下材料
材料:因式分解:
解:将“”看成整体,令,则原式
再将“A”还原,得原式
上述解题用到是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:
(1)因式分解:______;
(2)因式分解:;
25. 某商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶进价比乙种牛奶的进价每件少4元,其用200元购进甲种牛奶的数量与用220元购进乙种牛奶的数量相同.
(1)求甲种牛奶、乙种牛奶的进价分别是多少元?
(2)若该商场购进甲种牛奶的数量是乙种牛奶的2倍少4件,该商场甲种牛奶的销售价格为每件45元,乙种牛奶的销售价格为每件50元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于364元,请通过计算求出该商场购进甲、乙两种牛奶各多少件?
26. 如图,△ABC是等边三角形,AB=6,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)证明:在运动过程中,点D是线段PQ的中点;
(2)当∠BQD=30°时,求AP的长;
(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
石家庄市藁城区2024-2025学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:A选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
B选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
C选项轴对称图形,符合题意.
D选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
2.【答案】:C
【解析】:解:A选项,,故选项错误;
B选项,,故选项错误;
C选项,,故选项正确;
D选项,,故选项错误.
故选:C.
3.【答案】:B
【解析】:解:利用三角形的三边关系可得应把8cm的木条截成两段,
如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于6,所以,可以,
而6cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.
故选:B.
4.【答案】:D
【解析】:由题意可得△CAE≌△BAD,△DCO≌△EBO,△ACO≌△ABO,△DAO≌△EAO共4对三角形全等.
故选:D.
5.【答案】:C
【解析】:解:根据三角形任意两边的和大于第三边,可知:
A、2+5<8,不能够组成三角形,故不符合题意;
B、2+3=5,不能组成三角形,故不符合题意;
C、2+6>7,能组成三角形,故符合题意;
D、2+6<9,不能组成三角形,故不符合题意;
故选:C.
6.【答案】:A
【解析】:,
又与的乘积中不含的一次项,
,
解得.
故选:A.
7.【答案】:C
【解析】:A、,故A不符合题意.
B、,故B不符合题意.
C、,故C符合题意.
D、,故D不符合题意.
故选:C.
8.【答案】:C
【解析】:解: , ,D为BC中点,
,
,
,D为BC中点,
,
,
, ,
,
.
故答案为:C.
9.【答案】:C
【解析】:解:由题意可得
故选:C.
10.【答案】:C
【解析】:解:∵FE⊥DB,
∵∠DEF=90°,
∵∠1=50°,
∴∠D=90°﹣50°=40°,
∵AB∥CD,
∴∠2=∠D=40°.
故选C.
11.【答案】:B
【解析】:解:∵长与宽分别为a、b的长方形,它的周长为14,面积为10,
∴ab=10,a+b=7,
∴a3b+2a2b2+ab3=ab(a+b)2=10×72=490.
故选:B.
12.【答案】:A
【解析】:解:∵∠B=90°,∠A=30°,AC=a,
∴BC=AC=a,
∵以点C为圆心,CB长为半径画弧交AC于点D,
∴CD=BC=a,
∵以点A为圆心,AD长为半径画弧交AB于点E,
∴AD=AE=AC-CD=a,
∵AB=m,
∴BE=AB-AE=m-a,
故选:A.
13.【答案】:C
【解析】:解:方程两边都乘以(x-3)得:
整理得:(m-2)x=2m-6,
由分式方程无解,
一种情况是未知数系数为0得:m-2=0,m=2,
一种情况是方程有增根得:x−3=0,即x=3,
把x=3代入整式方程得:m=0,
故选:C.
14.【答案】:B
【解析】:解:①任意多边形的外角和等于360°,说法错误,不符合题意;
②只有锐角三角形的高相交于三角形的内部,说法错误,不符合题意;
③根据三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和,得三角形的一个外角大于任意一个于它不相邻的内角,说法错误,不符合题意;
④根据多边形内角和公式:,得一个多边形的边数每增加一条,这个多边形的内角和就增加180°,说法正确,符合题意;
⑤n边形的对角线条数为:,当n=5时,,说法正确,符合题意;
综上,正确个数有2个,
故选B.
15.【答案】:B
【解析】:解:设AB=a,AD=b,由题意得8a+8b=24,2a2+2b2=12,
即a+b=3,a2+b2=6,
∴,
即长方形ABCD的面积为,
故选:B.
16.【答案】:D
【解析】:解:A、∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;
B∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(ASA),正确;
C、∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;
D、无法判定,错误;
故选D.
【画龙点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL. 注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
二. 填空题
17.【答案】: -1
【解析】:点与点关于轴对称,
,,
∴,
故答案为:.
18.【答案】: 20°或100°
【解析】:设∠B的角平分线交AC于点E,
当时,如图1,
∵AB=AC,
∴,
∴,
∵∠ABE+∠A=∠BEC,
∴,
∴;
当时,如图2,
∵AB=AC,
∴,
∴,
∵,
∴,
∴,
综上所述,的度数为或.
19.【答案】: ①. 等边 ②. 6
【解析】:(1)△ADE是等边三角形,理由如下:
点D, E关于直线AC对称,
AD=AE,∠DAC=∠EAC,
∵△ABC是等边三角形,
AB=AC,∠BAC=60°,
点D为线段BC的中点,
,
,
∠DAE=60°,
AD=AE,
△ADE是等边三角形;
(2)解:如图2所示,.
证明: F为线段BE的中点,
BF=EF,
∵△ABC是等边三角形,
AC=BC, ,
,
点D, E关于直线AC对称,
CD=CE,∠ACD=∠ACE=120°,
, ,
CE=BG,∠BCE=60°,
,,
,
在△BFG和△EFC中,
∴△BFG≌△EFCSAS ,
,
CG=2CF,
在 和 中,
,
∴△ACD≌△CBGSAS ,
AD=CG,
,
,
;
故答案为:等边;6.
三.解答题
20【答案】:
(1);(2)
【解析】:
解:(1)原式
;
(2)原式
.
21【答案】:
(1),2;(2)不能,理由见解析
【解析】:
(1)原式=
=
=
=,
当时,原式==2;
(2)如果,即,
∴,而当时,除式,
∴原代数式的值不能等于.
22【答案】:
(1)见解析 (2)见解析
(3)见解析 (4)见解析
【解析】:
【小问1详解】
如图所示,△A′B′C′即为所求作,
【小问2详解】
如图,点P即为所求作,
【小问3详解】
如图,即为所作,
【小问4详解】
如图,选择格点D、E,证明△ACD≌△BCE.于是,AC=BC.
选择格点Q,证明△ACQ≌△BCQ,于是,AQ=BQ.
∴CQ为线段AB的垂直平分线,设CQ与AB相交于点F,则CF为所要求的△ABC的边AB上的高.
23【答案】:
(1)见解析 (2)a﹣b
【解析】:
【小问1详解】
证明:∵AB=AC,∠A=36°,
∴∠ABC=∠C==72°,
∵DE是AC的垂直平分线,
∴AD=BD,
∴∠ABD=∠A=36°,
∵∠CDB是△ADB的外角,
∴∠CDB=∠ABD+∠A=72°,
∴∠C=∠CDB,
∴CB=DB,
∴△BCD是等腰三角形;
【小问2详解】
解:由(1)可知AD=BD=CB=b,
∵△ABD周长是a,
∴AB=a﹣2b,
∵AB=AC,
∴CD=a﹣3b,
∴△BCD的周长=CD+BD+BC=a﹣3b+b+b=a﹣b.
【画龙点睛】本题考查了等腰三角形的性质与判定,线段垂直平分线的性质,三角形的内角和与三角形的外角的定义与性质,综合运用以上知识是解题的关键.
24【答案】:
(1)
(2)
【解析】:
【小问1详解】
解:
=
=;
故答案为:;
【小问2详解】
设,
原式,
将A还原,则原式;
25【答案】:
(1)甲种牛奶的进价是40元/件,乙种牛奶的进价是44元/件;
(2)该商场购进甲种牛奶44件,乙种牛奶24件
【解析】:
【小问1详解】
设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣4)元/件,
根据题意,得:
解得:x=44,
经检验,x=44是原分式方程的解,且符合实际意义,
∴x﹣4=40.
∴甲种牛奶的进价是40元/件,乙种牛奶的进价是44元/件;
【小问2详解】
设购进乙种牛奶y件,则购进甲种牛奶(2y﹣4)件,
根据题意,得(45﹣40)(2y﹣4)+(50﹣44)y=364,
解得y=24,
∴2y﹣4=44.
∴该商场购进甲种牛奶44件,乙种牛奶24件.
26【答案】:
(1)见解析;(2)AP=2;(3)DE的长不变,定值为3.
【解析】:
(1)过P作PF∥QC交AB于F,则是等边三角形,根据AAS证明三角形全等即可;
(2)想办法证明BD=DF=AF即可解决问题;
(3)想办法证明即可解决问题.
【详解】(1)证明:过P作PF∥QC交AB于F,则是等边三角形,
∵P、Q同时出发,速度相同,即BQ=AP,
∴BQ=PF,
在和中,
,
∴,
∴DQ=DP;
(2)解:∵,
∴BD=DF,
∵,
∴,
∴,
∴AP=2;
(3)解:由(2)知BD=DF,
∵是等边三角形,PE⊥AB,
∴AE=EF,
∴DE=DF+EF
=3,为定值,即DE的长不变.
【画龙点睛】本题主要考查了三角形全等的性质及判定,以及三角形中的动点问题,熟练掌握相关几何综合的解法是解决本题的关键.
相关试卷
这是一份河北省涉县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省曲阳县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省易县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。