所属成套资源:河北省各地区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
河北省石家庄市鹿泉区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省石家庄市鹿泉区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列在线学习平台的图标中,是轴对称图形的是( )
A. B. C. D.
2. 下列运算正确的是( )
A. B.
C. D.
3. 人体中枢神经系统中含有1千亿个神经元.某个神经元的直径约为52微米,52微米为5.2 × 10-5米. 将5.2 × 10-5用小数表示为( )
A. 0.00052B. 0.000052C. 0.0052D. 0.0000052
4. 已知分式的值是零,那么的值是
A. ﹣1B. 0C. 1D. ±1
5. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )
A. 3B. 4C. 6D. 8
6. 下列长度的三条线段,能组成三角形的是( )
A. 3,5,6B. 3,2,1C. 2,2,4D. 3,6,10
7. 一副三角板按如图所示叠放在一起,则图中的度数为( )
A. B. C. D.
8. 如图,在△ABC中,∠B=90°,∠A=30°,AC=a,AB=m,以点C为圆心,CB长为半径画弧交AC于点D,再以点A为圆心,AD长为半径画弧交AB于点E,则BE的长为( )
A. m﹣B. a﹣mC. 2a﹣mD. m﹣a
9. 若关于x的分式方程-2=无解,则m的值为( )
A. 0B. 2C. 0或2D. 无法确定
10. 化简.这个代数式的值和a,b哪个字母的取值无关.( )
A. a和bB. a
C. bD. 不能确定
11. 练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有
① ②
③ ④
A. 1个B. 2个C. 3个D. 4个
12. 点在的角平分线上,点到边的距离等于,点是边上的任意一点,则下列选项正确的是( )
A. B. C. D.
13. 如图,,下列等式不一定正确的是( )
A. B. C. D.
14. 若,,则的值为( )
A. 4B. -4C. D.
15. 如图,已知在△ABC中,,点D,E分别在边,上,,,若,则的度数为( )
A. 30°B. 40°C. 50°D. 60°
16. 一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是( )(用含a,b的代数式表示).
A. abB. 2abC. a2﹣abD. b2+ab
二.填空题(本大题共3题,总计 12分)
17. 分解因式:(1)________________;
(2)________________.
18. 如图,△ABC中,是的垂直平分线,AE=3cm, △ABD的周长为,则的周长为______.
19. 如图,已知∠AOB=30°,点P在边OA上,OP=14,点E,F在边OB上,PE=PF,EF=6.若点D是边OB上一动点,则∠PDE=45°时,DF的长为_____.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 计算:
(1)
(2)
21. 化简:(﹣) ÷ ,并解答:
(1)当x=3时,求原式的值;
(2)原式的值能等于﹣1吗?为什么?
22. 如图,△ABC三个顶点的坐标分别为A(﹣4,﹣2),B(﹣1,﹣1),C(﹣1,﹣4).
(1)画出△ABC关于y轴对称的图形△A1B1C1;
(2)在x轴上作出一点P,使PA+PB的值最小(保留作图痕迹)
23. 已知在△ABC中,,,是△ABC的高,分别交,于点E,F.
(1)如图1,若,且,求的度数;
(2)如图2,若.
①求的度数;
②求证:.
24. 我阅读:类比于两数相除可以用竖式运算,多项式除以多项式也可以用竖式运算,其步骤是:
(1)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).
(2)用竖式进行运算.
(3)当余式的次数低于除式的次数时,运算终止,得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求的商式和余式.
解:
答:商式是,余式是( )
我挑战:已知能被整除,请直接写出a、b的值.
25. 刘峰和李明相约周末去科技馆看展览,根据他们的谈话内容,试求李明乘公交车、刘峰骑自行车每小时各行多少千米?
26. 如图,△ABC中,AB=BC=AC=8cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒时,M、N两点重合?
(2)点M、N运动几秒时,可得到等边三角形△AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.
石家庄市鹿泉区2024-2025学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:B
【解析】:解:选项A,C,D都不能找到这样的一条直线,使这些图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;
选项B能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.
故选:B.
2.【答案】:D
【解析】:A、,故不符合题意;
B 、,故不符合题意;
C、,故不符合题意;
D、,故符合题意;
故选:D.
3.【答案】:B
【解析】:解:5.2×10-5=0.000052,
故选B
4.【答案】:C
【解析】:解:由题意可知:且,
,
故选:C.
5.【答案】:D
【解析】:解:∵正多边形的一个内角是135°,
∴该正多边形的一个外角为45°,
∵多边形的外角之和为360°,
∴边数=,
∴这个正多边形的边数是8.
故选:D.
6.【答案】:A
【解析】:A. ∵3+5>6,∴长度为3,5,6的三条线段能组成三角形,故该选项符合题意,
B. ∵1+2=3,∴长度为3,2,1的三条线段不能组成三角形,故该选项不符合题意,
C. ∵2+2=4,∴长度为2,2,4的三条线段不能组成三角形,故该选项不符合题意,
D. ∵3+6<10,∴长度为3,6,10三条线段不能组成三角形,故该选项不符合题意,
故选A
7.【答案】:B
【解析】:如图所示:
由题意得,∠ABD=60°,∠C=45°,
∴∠α=∠ABD−∠C=15°,故B正确.
故选:B.
【画龙点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
8.【答案】:A
【解析】:解:∵∠B=90°,∠A=30°,AC=a,
∴BC=AC=a,
∵以点C为圆心,CB长为半径画弧交AC于点D,
∴CD=BC=a,
∵以点A为圆心,AD长为半径画弧交AB于点E,
∴AD=AE=AC-CD=a,
∵AB=m,
∴BE=AB-AE=m-a,
故选:A.
9.【答案】:C
【解析】:解:方程两边都乘以(x-3)得:
整理得:(m-2)x=2m-6,
由分式方程无解,
一种情况是未知数系数为0得:m-2=0,m=2,
一种情况是方程有增根得:x−3=0,即x=3,
把x=3代入整式方程得:m=0,
故选:C.
10.【答案】:C
【解析】:
,
则这个代数式的值与字母b的取值无关,
故选:C.
11.【答案】:B
【解析】::①x3+x=x(x2+1),不符合题意;
②x2-2xy+y2=(x-y)2,符合题意;
③a2-a+1不能分解,不符合题意;
④x2-16y2=(x+4y)(x-4y),符合题意,
故选B
12.【答案】:B
【解析】:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,
∴点P到OB的距离为5,
∵点Q是OB边上的任意一点,
∴PQ≥5.
故选:B.
13.【答案】:D
【解析】:,
,,,,
,
,
即只有选项符合题意,选项A、选项B、选项C都不符合题意;
故选:D.
14.【答案】:A
【解析】:因为,
所以,
因为,
所以,
联立方程组可得:
解方程组可得,
所以,
故选A.
15.【答案】:C
【解析】:如图,过点D作于点F.
∴在△DBE和中,
∴△DBE≅△DFC(AAS),
∴,
∴AD为的角平分线,
∴,
∴.
故选C.
16.【答案】:A
【解析】:解:设小正方形的边长为x,则大正方形的边长为a﹣2x=2x+b,
可得x=,大正方形边长为=,
则阴影部分面积为()2﹣4()2==ab,
故选:A.
二. 填空题
17.【答案】: ①. ②.
【解析】:(1)原式,
,
故答案为:;
(2)原式,
,
,
故答案为:.
18.【答案】: 19cm
【解析】:解:∵是的垂直平分线,
∴cm,,
∴AC=AE+CE=6(cm),
∵的周长为,
∴(cm),
∴(cm),即(cm),
∴(cm);
∴△ABC的周长为19cm;
故答案为:19cm.
19.【答案】: 4或10
【解析】:解:如图,过点P作PH⊥OB于点H,
∵PE=PF,
∴EH=FH=EF=3,
∵∠AOB=30°,OP=14,
∴PH=OP=7,
当点D运动到点F右侧时,
∵∠PDE=45°,
∴∠DPH=45°,
∴PH=DH=7,
∴DF=DH﹣FH=7﹣3=4;
当点D运动到点F左侧时,
D′F=D′H+FH=7+3=10.
所以DF的长为4或10.
故答案为4或10.
三.解答题
20【答案】:
(1);(2).
【解析】:
(1)原式=
=
;
(2)原式=
=..
21【答案】:
(1),2;(2)不能,理由见解析
【解析】:
(1)原式=
=
=
=,
当时,原式==2;
(2)如果,即,
∴,而当时,除式,
∴原代数式的值不能等于.
22【答案】:
(1)见解析.
(2)见解析
【解析】:
【小问1详解】
解:A1(4,﹣2),B1(1,﹣1),C1(1,﹣4).
如图所示:△A1B1C1,即为所求;
【小问2详解】
解:如图所示:点P即为所求.
【画龙点睛】本题主要考查了轴对称变换以及利用轴对称求最短路线,正确得出对应点位置是解题关键.
23【答案】:
(1)30° (2)①;②见解析
【解析】:
【小问1详解】
∵BF⊥AC,
∴∠AFB=90°,
∵∠BAC=45°,
∴∠ABF=90°-∠BAC=45°,
∵∠BDE=75°,
∴∠BAE=∠BDE-∠ABF=30°;
【小问2详解】
①∵∠ABC=∠C,
∴AB=AC,
∵AE⊥BC,
∴AE平分∠BAC,
∴∠BAE=∠CAE=∠BAC=22.5°;
②证明:∵∠BAC=45°,BF⊥AC,
∴∠AFB=90°,
∴∠ABF=∠BAC=45°,
∴FA=FB,
∵BF⊥AC,AE⊥BC,
∴∠CFB=∠AFD=∠AEC=90°,
∴∠C+∠CAE=90°,∠ADF+∠CAE=90°,
∴∠ADF=∠C,
在△ADF和△BCF中,
,
∴△ADF≌△BCF(AAS).
24【答案】:
我会做:
;,
我挑战:
【解析】:
解:我会做:补全如下,
答:商式是,余式是()
故答案为:;
我挑战:能被整除,则余数为0,根据题意列竖式运算即可,
解得
【画龙点睛】本题考查了多项式除以多项式,掌握多项式的乘法是解题的关键.
25【答案】:
刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米
【解析】:
解:设刘峰骑自行车每小时行x千米,则李明乘公交车每小时行千米,
根据题意,得,
解得,
经检验,是所列分式方程的解,且符合题意,
∴(千米/时),
答:刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米.
26【答案】:
(1)点M,N运动8秒时,M、N两点重合;
(2)点M、N运动秒时,可得到等边三角形△AMN;
(3)当M、N运动秒时,得到以MN为底边的等腰三角形AMN
【解析】:
【小问1详解】
解:设运动t秒,M、N两点重合,
根据题意得:2t﹣t=8,
∴t=8,
答:点M,N运动8秒时,M、N两点重合;
【小问2详解】
解:设点M、N运动x秒时,可得到等边三角形△AMN,
∵△AMN是等边三角形,
∴AN=AM,
∴x=8﹣2x,
解得:x=,
∴点M、N运动秒时,可得到等边三角形△AMN;
【小问3详解】
设M、N运动y秒时,得到以MN为底边的等腰三角形AMN.
∵△ABC是等边三角形,
∴AB=AC,∠C=∠B=60°,
∵△AMN是以MN为底边的等腰三角形,
∴AM=AN,
∴∠AMN=∠ANM,
∵∠C=∠B,AC=AB,
∴△ACN≌△ABM(AAS),
∴CN=BM,
∴CM=BN,
∴y﹣8=8×3﹣2y,
∴y=.
答:当M、N运动秒时,得到以MN为底边等腰三角形AMN
【画龙点睛】本题是三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,利用方程的思想解决问题是本题的关键.刘峰:我查好地图了,你看看
李明:好的,我家门口的公交车站,正好有一趟到科技馆那站停的车,我坐明天的车.
刘峰:从地图上看,我家到科技馆的距离比你家近10千米,我就骑自行车去了.
李明:行,根据我的经验,公交车的速度一般是你骑自行车速度的3倍,那你明天早上点从家出发,如顺利,咱俩同时到达.
相关试卷
这是一份河北省涉县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省易县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省威县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。