所属成套资源:河北省各地区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
河北省辛集市2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省辛集市2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共23页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 用数学的眼光观察下面的网络图标,其中可以抽象成轴对称图形的是( )
A. B. C. D.
2. 下列运算正确的是( )
A. B.
C. D.
3. 我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000023米.用科学记数法表示0.000000023为( )
A. 23×10﹣10B. 2.3×10﹣10C. 2.3×10﹣9D. 2.3×10﹣8
4. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )
A. 3B. 4C. 6D. 8
5. 下列不能用平方差公式直接计算的是( )
A. B.
C D.
6. 若,则2n-3m的值是( )
A. -1B. 1C. 2D. 3
7. 下列等式中,不成立的是( )
A. B.
C. D.
8. 如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB.若∠BA'C=110°,则∠1+∠2的度数为( )
A. 80°B. 90°C. 100°D. 110°
9. 如图,在 ABC 中,ED / / BC ,ABC 和 ACB 的平分线分别交 ED 于点 G 、F ,若 FG 2 ,ED 6 ,则EB DC 的值为( )
A. 6B. 7
C. 8D. 9
10. 如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A. 60°B. 50°C. 40°D. 30°
11. 在ΔABC中给定下面几组条件:
①∠ACB=30°,BC=4cm,AC=5cm ②∠ABC=30°,BC=4cm,AC=3cm
③∠ABC=90°,BC=4cm,AC=5cm ④∠ABC=120°,BC=4cm,AC=5cm
若根据每组条件画图,则ΔABC不能够唯一确定的是( )
A. ①B. ②C. ③D. ④
12. 如图,在长方形ABCD中,连接AC,以A为圆心,适当长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,大于的长为半径画弧,两弧在内交于点H,画射线AH交DC于点M.若,则的大小为( )
A. B. C. D.
13. 下列说法中,正确的个数有( )
①若一个多边形的外角和等于360°,则这个多边形的边数为4;
②三角形的高相交于三角形的内部;
③三角形的一个外角大于任意一个内角;
④一个多边形的边数每增加一条,这个多边形的内角和就增加;
⑤对角线共有5条的多边形是五边形.
A. 1个B. 2个C. 3个D. 4个
14. 如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA 2,则PQ的长不可能是( )
A. 4B. 3.5
C. 2D. 1.5
15. 去一个边长为的正方形(),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
A. B.
C. D.
16. 已知甲做360个零件与乙做480个零件所用的时间相同,两人每天共做140个零件,设甲每天做x个零件,根据题意,可列方程为( )
A. B.
C. D.
二.填空题(本大题共3题,总计 12分)
17. ______;
18. 有一三角形纸片ABC,∠A=70°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两个纸片均为等腰三角形,则∠C的度数可以是_____.
19. 如图,已知∠AOB=30°,点P在边OA上,OP=14,点E,F在边OB上,PE=PF,EF=6.若点D是边OB上一动点,则∠PDE=45°时,DF的长为_____.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. (1)计算:;
(2)因式分解:.
21. 已知(x+y)2=1,(x﹣y)2=49,求x2+y2与y的值.
22. 在平面直角坐标系中,△ABC三个顶点的坐标为:A(﹣3,2),B(﹣4,﹣3)C(﹣1,﹣1)
(1)若△A1B1C1与△ABC关于y轴对称,请写出点A1,B1,C1的坐标(直接写答案):A1 ;B1, ;C1 ;
(2)△ABC的面积为 ;
(3)在y轴上画出点P,使PB+PC最小.
23. 如图,AD平分∠BAC,∠EAD=∠EDA,∠B=54°.
(1)求∠EAC的度数;
(2)若∠CAD:∠E=2:5;求∠E的度数.
24. 已知关于x的分式方程
(1)当a=5时,求方程的解:
(2)若该方程去分母后所得整式方程的解不是原分式方程的解,求a的值;
(3)如果关于x的分式方程的解为正数,那么a的取值范围是什么?
小明说:“解这个关于x的分式方程,得到方程的解为x=a-2.因为解是正数,可得a-2>0,所以a>2”,小明说的对吗?为什么?
(4)关于x的方程有整数解,直接写出整数m的值,m值为_______________.
25. 某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餍椅的总数量不超过200张.该商场计划将餐桌成套(一张餐桌和四张餐椅配成一套)销售,多余的桌或椅以零售方式销售.请问当进货量最大时获得的利润是多少?
26. 已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.
【发现】
(1)如图1,若∠ABC=∠ADC=90°,则∠BCD= °,△CBD是 三角形;
【探索】
(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;
【应用】
(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有 .(只填序号)
①2个 ②3个 ③4个 ④4个以上
辛集市2024-2025学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:解:选项不是轴对称图形,故不符合题意;
选项不是轴对称图形,故不符合题意;
选项是轴对称图形,故符合题意;
选项不是轴对称图形,故不符合题意;
故选:
2.【答案】:D
【解析】:A、,故不符合题意;
B 、,故不符合题意;
C、,故不符合题意;
D、,故符合题意;
故选:D.
3.【答案】:D
【解析】:解:0.000000023=2.3×10﹣8.
故选:D.
4.【答案】:D
【解析】:解:∵正多边形的一个内角是135°,
∴该正多边形的一个外角为45°,
∵多边形的外角之和为360°,
∴边数=,
∴这个正多边形的边数是8.
故选:D.
5.【答案】:A
【解析】:A. ,不符合平方差公式,符合题意,
B. ,符合平方差公式,不符合题意,
C. ,符合平方差公式,不符合题意,
D. ,符合平方差公式,不符合题意,
故选:A.
6.【答案】:B
【解析】:解:∵,
∴,
∴,
∴.
故选:B
7.【答案】:C
【解析】:A、,故A不符合题意.
B、,故B不符合题意.
C、,故C符合题意.
D、,故D不符合题意.
故选:C.
8.【答案】:A
【解析】:解:连接AA′,如图:
∵A'B平分∠ABC,A'C平分∠ACB,∠BA'C=110°,
∴∠A′CB+∠A′BC=70°,
∴∠ACB+∠ABC=140°,
∴∠BAC=180°-140°=40°,
∴∠1=∠DAA′+∠DA′A,∠2=∠EAA′+∠EA′A,
∵∠DAA′=∠DA′A,∠EAA′=∠EA′A,
∴∠1+∠2=2(∠DAA′+∠EAA′)=2∠BAC=80°.
故选:A
9.【答案】:C
【解析】:∵ED∥BC,
∴∠EGB=∠GBC,∠DFC=∠FCB,
∵∠GBC=∠GBE,∠FCB=∠FCD,
∴∠EGB=∠EBG,∠DCF=∠DFC,
∴BE=EG,CD=DF,
∵FG=2,ED=6,
∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,
故选C.
10.【答案】:C
【解析】:解:∵FE⊥DB,
∵∠DEF=90°,
∵∠1=50°,
∴∠D=90°﹣50°=40°,
∵AB∥CD,
∴∠2=∠D=40°.
故选C.
11.【答案】:B
【解析】:解:①BC=4cm,AC=5cm,∠ACB=30°,满足“SAS”,所以根据这组条件画图,△ABC唯一;
②BC=4cm,AC=3cm,∠ABC=30°,根据这组条件画图,△ABC可能为锐角三角形,也可为钝角三角形;
③BC=4cm,AC=5cm,∠ABC=90°;满足“HL”,所以根据这组条件画图,△ABC唯一;
④BC=4cm,AC=5cm,∠ABC=120°,根据这组条件画图,△ABC唯一.
所以,ΔABC不能够唯一确定的是②.
故选:B
12.【答案】:B
【解析】:解:四边形是长方形,
,
,
由题意可知,平分,
,
,
故选:B.
13.【答案】:B
【解析】:解:①任意多边形的外角和等于360°,说法错误,不符合题意;
②只有锐角三角形的高相交于三角形的内部,说法错误,不符合题意;
③根据三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和,得三角形的一个外角大于任意一个于它不相邻的内角,说法错误,不符合题意;
④根据多边形内角和公式:,得一个多边形的边数每增加一条,这个多边形的内角和就增加180°,说法正确,符合题意;
⑤n边形的对角线条数为:,当n=5时,,说法正确,符合题意;
综上,正确个数有2个,
故选B.
14.【答案】:D
【解析】:解:当PQ⊥OM时,PQ的值最小,
∵OP平分∠MON,PA⊥ON,PA=2,
∴PQ=PA=2,
所以的最小值为2,
所以A,B,D不符合题意,D符合题意;
故选:D.
15.【答案】:D
【解析】:如下图:
根据题意,得,,
∴
∴剩余部分沿虚线又剪拼成一个矩形后,
∴矩形的面积
故选:D.
【画龙点睛】本题考查了正方形、矩形的知识;解题的关键是熟练掌握正方形、矩形的性质,从而完成求解.
16.【答案】:A
【解析】:设甲每天做x个零件,根据题意得:
;
故选A.
二. 填空题
17.【答案】: .
【解析】:解:.
故答案为:.
18.【答案】: 20°或35°或27.5°
【解析】:由题意知△ABD与△DBC均为等腰三角形,
对于△ABD可能有①AB=BD,此时∠ADB=∠A=70°,
∴∠BDC=180°﹣∠ADB=180°﹣70°=110°,
∠C=(180°﹣110°)=35°,
②AB=AD,此时∠ADB=(180°﹣∠A)=(180°﹣70°)=55°,
∴∠BDC=180°﹣∠ADB=180°﹣55°=125°,
∠C=(180°﹣125°)=27.5°,
③AD=BD,此时,∠ADB=180°﹣2×70°=40°,
∴∠BDC=180°﹣∠ADB=180°﹣40°=140°,
∠C=(180°﹣140°)=20°,
综上所述,∠C度数可以为20°或35°或27.5°.
故答案为:20°或35°或27.5°
【画龙点睛】本题考查了等腰三角形的性质,难点在于分情况讨论.
19.【答案】: 4或10
【解析】:解:如图,过点P作PH⊥OB于点H,
∵PE=PF,
∴EH=FH=EF=3,
∵∠AOB=30°,OP=14,
∴PH=OP=7,
当点D运动到点F右侧时,
∵∠PDE=45°,
∴∠DPH=45°,
∴PH=DH=7,
∴DF=DH﹣FH=7﹣3=4;
当点D运动到点F左侧时,
D′F=D′H+FH=7+3=10.
所以DF的长为4或10.
故答案为4或10.
三.解答题
20【答案】:
(1);(2)
【解析】:
解:(1)原式
;
(2)原式
.
21【答案】:
,的值为或或或
【解析】:
解:∵①,②,
∴①+②得:,解得;
∵,
或,
,
或,
或或或,
解得或或或,
,的值为或或或.
【画龙点睛】此题考查了完全平方公式、平方根的运用,熟练掌握完全平方公式和平方根的运算是解本题的关键.
22【答案】:
(1)(3,2)、(4,﹣3)、(1,﹣1);(2)6.5;(3)见解析.
【解析】:
(1)根据点关于y轴对称的性质得:;
(2)如图可知,
则;
(3)由题意可得y轴是线段的垂直平分线,则
因此
由三角形的三边关系得
故当三点共线时,最小,且最小值为
连接,与y轴的交点即为所求点P(如图所示).
【画龙点睛】本题考查了平面直角坐标系中点坐标的对称变换、三角形的三边关系,理解掌握点的坐标的对称变换是解题关键.
23【答案】:
(1)∠EAC=54°;
(2).
【解析】:
【小问1详解】
∵∠EAD=∠EDA,
∴∠EAC+∠CAD=∠B+∠BAD,
∵AD平分∠BAC,
∴∠CAD=∠BAD.
∴∠EAC=∠B.
∵∠B=54°,
∴∠EAC=54°.
【小问2详解】
设∠CAD=2x,则∠E=5x,∠DAB=2x,
∵∠B=54°,
∴∠EDA=∠EAD=2x+54°.
∵∠EDA+∠EAD+∠E=180°,
∴2x+54°+2x+54°+5x=180°.
解得x=8°.
∴∠E=5x=40°.
24【答案】:
(1)
(2)
(3)小明的说法不对,理由见解析
(4)3,4,0
【解析】:
【小问1详解】
当a=5时,分式方程为:
解分式方程得:
检验:当时,
所以分式方程的解为.
【小问2详解】
把去分母得,
∵若该方程去分母后所得整式方程的解不是原分式方程的解
∴时满足题意
即时满足题意,此时.
【小问3详解】
小明的说法不对,理由如下:
解这个关于x的分式方程,得到方程的解为x=a﹣2,
因为解是正数,可得a﹣2>0,即a>2,
同时a﹣2≠1,即a≠3,
则a的范围是a>2且a≠3.
【小问4详解】
m=3,4,0.
理由:去分母得:mx﹣1﹣1=2x﹣4,
整理得:(m﹣2)x=﹣2,
当m≠2时,解得:x=﹣,
由方程有整数解,得到m﹣2=±1,m﹣2=±2,
解得:m=3,1,4,0.
因为x-2≠0,所以m≠1
所以m=3,4,0
故答案为3,4,0
25【答案】:
(1)150
(2)当进货量最大时获得的利润是7200元
【解析】:
(1)根据题意确定等量关系列方程即可.
(2)首先设购进桌子的数量为x,求出其取值范围,再列出总利润和x的函数关系,根据一次函数性质求最大值即可.
【小问1详解】
解:根据题意,得:,解得:
经检验符合实际且有意义.
∴表中a的值为150.
【小问2详解】
解:设餐桌购进x张,则餐椅购进张,
依题意列:
解得:
设利润为W元,
则
∵
∴W随x的增大而增大
∴当 x=30时,W 有最大值
此时 .
答:当进货量最大时获得的利润是7200元.
【画龙点睛】本题考查了分式方程和一元一次不等式以及一次函数的性质,解题的关键是理解题意,找出等量关系列出方程,再根据一次函数性质求最大利润.
26【答案】:
(1)60,等边;(2)等边三角形,证明见解析(3)④.
【解析】:
(1)如图1,连接BD,
∵∠ABC=∠ADC=90°,∠MAN=120°,
根据四边形的内角和得,∠BCD=360°-(∠ABC+∠ADC+∠MAN)=60°,
∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,
∴CD=CB,(角平分线的性质定理),
∴△BCD是等边三角形;
故答案为60,等边;
(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),
过点C作CE⊥AM于E,CF⊥AN于F,
∵AC是∠MAN的平分线,
∴CE=CF,
∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,
∴∠CDE=∠ABC,
在△CDE和△CFB中,
,
∴△CDE≌△CFB(AAS),
∴CD=CB,
∵∠BCD=60°,
∴△CBD是等边三角形;
(3)如图3,
∵OP平分∠EOF,∠EOF=120°,
∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',
∴△G'OP是等边三角形,此时点H'和点O重合,
同理:△OPH是等边三角形,此时点G和点O重合,
将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,
边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),
所以有无数个;
理由:同(2)的方法.
故答案为④.原进价(元/张)
零售价(元/张)
成套售价(元/套)
餐桌
a
270
500元
餐椅
70
相关试卷
这是一份河北省磁县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省滦州市2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省涉县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。