所属成套资源:河北省各地区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
河北省迁安市2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省迁安市2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为( )
A. B. C. D.
2. 下面四个图形中,线段BE能表示三角形ABC的高的是( )
A.
B.
C.
D.
3. 刘零想做一个三角形的框架,她有两根长度分别为6cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分成两段的是( )
A. 6cm的木条B. 8cm的木条C. 两根都可以D. 两根都不行
4. 若,则2n-3m的值是( )
A. -1B. 1C. 2D. 3
5. 若M=(x-3)(x-4),N=(x-1)(x-6),则M与N的大小关系为()
A. M>NB. M=NC. M<ND. 由x的取值而定
6. 如图,∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是( )
A. AC=ADB. AC=BCC. ∠ABC=∠ABDD. ∠BAC=∠BAD
7. 若(x+m)(x﹣8)中不含x的一次项,则m的值为( )
A. 8B. ﹣8C. 0D. 8或﹣8
8. 如图,已知在△ABC中,,,嘉淇通过尺规作图得到,交于点D,根据其作图痕迹,可得的度数为( )
A. 120°B. 110°C. 100°D. 98°
9. 如图,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,则不正确的结论是( ).
A. Rt△ACD和Rt△BCE全等B. OA=OB
C. E是AC的中点D. AE=BD
10. 如果把分式中的,都扩大3倍,那么分式的值( )
A. 扩大3倍B. 不变
C. 缩小3倍D. 扩大9倍
11. 如图,在 ABC 中,ED / / BC ,ABC 和 ACB 的平分线分别交 ED 于点 G 、F ,若 FG 2 ,ED 6 ,则EB DC 的值为( )
A. 6B. 7
C. 8D. 9
12. 若,,则的值为( )
A. 4B. -4C. D.
13. 如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为( )
A. 84°B. 60°C. 48°D. 43°
14. 如图,在长方形ABCD中,连接AC,以A为圆心,适当长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,大于的长为半径画弧,两弧在内交于点H,画射线AH交DC于点M.若,则的大小为( )
A. B. C. D.
15. 下列多项式不能用公式法进行因式分解的是( )
A. 1 a2B.
C. x2 2xy y2D. 4x2 4x 1
16. 如图,在平面直角坐标系中xOy中,已知点A的坐标是(0,2),以OA为边在右侧作等边三角形OAA1,过点A1作x轴的垂线,垂足为点O1,以O1A1为边在右侧作等边三角形O1A1A2,再过点A2作x轴的垂线,垂足为点O2,以O2A2为边在右侧作等边三角形O2A2A3,……,按此规律继续作下去,得到等边三角形O2020A2020A2021,则点A2023的纵坐标为( )
A. ()2021B. ()2022C. ()2023D. ()2024
二.填空题(本大题共3题,总计 12分)
17. 已知点与点关于轴对称,则的值为_________.
18. 有一三角形纸片ABC,∠A=70°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两个纸片均为等腰三角形,则∠C的度数可以是_____.
19. 如图,在△ABC中,与相交于点F,且,则之间的数量关系是_____________.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 计算:
(1)
(2)
21. (1)解方程:
(2)先化简,再求值,其中.
22. 如图所示,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1)B(4,2)C(2,3).
(1)在图中画出△ABC关于x轴对称的图形△A1B1C1;
(2)在图中,若B2(﹣4,2)与点B关于一条直线成轴对称,则这条对称轴是 ,此时C点关于这条直线的对称点C2的坐标为 ;
(3)△A1B1C1的面积为 ;
(4)在y轴上确定一点P,使△APB的周长最小.(注:不写作法,不求坐标,只保留作图痕迹)
23. 八年级一班数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.
(探究与发现)
(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接BE,写出图中全等的两个三角形
(理解与应用)
(2)填空:如图2,EP是△DEF的中线,若EF=5,DE=3,设EP=x,则x的取值范围是 .
(3)已知:在△ABC中,D为BC的中点,M为AC的中点,连接BM交AD于F,若AM=MF.求证:BF=AC.
24. [阅读理解]我们常将一些公式变形,以简化运算过程.如:可以把公式“”变形成或等形式,
问题:若x满足,求的值.
我们可以作如下解答;设,,则,
即:.
所以.
请根据你对上述内容的理解,解答下列问题:
(1)若x满足,求的值.
(2)若x满足,求的值.
25. 甘蔗富含铁、锌等人体必需的微量元素,素有“补血果”的美称,是冬季热销的水果之一.为此,某水果商家12月份第一次用600元购进云南甘蔗若干千克,销售完后,他第二次又用600元购进该甘蔗,但这次每千克的进价比第一次的进价提高了,所购进甘蔗的数量比第一次少了.
(1)该商家第一次购进云南甘蔗的进价是每千克多少元?
(2)假设商家两次购进的云南甘蔗按同一价格销售,要使销售后获利不低于1000元,则每千克的售价至少为多少元?
26. (1)问题发现:如图,△ABC和△DCE都是等边三角形,点B、D、E在同一条直线上,连接AE.
①的度数为________;
②线段AE、BD之间的数量关系为________;
(2)拓展探究:如图②,△ABC和△DCE都是等腰直角三角形,,点B、D、E在同一条直线上,CM为△DCE中DE边上的高,连接AE.试求的度数及判断线段CM、AE、BM之间的数量关系,并说明理由;
(3)解决问题:如图,△ABC和△DCE都是等腰三角形,,点B、D、E在同一条直线上,请直接写出的度数.
迁安市2024-2025学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:D
【解析】:解:A、不是轴对称图形,此项不符题意;
B、不是轴对称图形,此项不符题意;
C、不是轴对称图形,此项不符题意;
D、是轴对称图形,此项符合题意;
故选:D.
2.【答案】:B
【解析】:解:由三角形的高的定义可知,只有选项B中的线段能表示三角形的高,
故选:B.
3.【答案】:B
【解析】:解:利用三角形的三边关系可得应把8cm的木条截成两段,
如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于6,所以,可以,
而6cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.
故选:B.
4.【答案】:B
【解析】:解:∵,
∴,
∴,
∴.
故选:B
5.【答案】:A
【解析】:解: M=(x-3)(x-4)=
N=(x-1)(x-6)=
即:
故选:A.
6.【答案】:A
【解析】:解: 需要添加条件为:BC= BD或AC= AD,理由为:
若添加的条件为:BC= BD
在Rt△ABC与Rt△ABD中,
∴Rt△ABC≌Rt△ABD(HL) ;
若添加的条件为:AC=AD
在Rt△ABC与Rt△ABD中,
∴Rt△ABC≌Rt△ABD( HL).
故选:A.
7.【答案】:A
【解析】:原式,
由结果不含一次项,得到,即,
则的值为8,
故选:A.
8.【答案】:B
【解析】:根据作图痕迹可知,是∠ABC的平分线,
∵,,
∴
∵是∠ABC的平分线,
∴
∴
故选:B.
9.【答案】:C
【解析】:解:A.∵∠C=∠C=90°,
∴△ACD和△BCE是直角三角形,
在Rt△ACD和Rt△BCE中,
∵AD=BE,DC=CE,
∴Rt△ACD≌Rt△BCE(HL),正确;
B.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,
在△AOE和△BOD中,
∵
∴△AOE≌△BOD(AAS),
∴AO=OB,正确,不符合题意;
C.AE=BD,CE=CD,不能推出AE=CE,错误,符合题意;
D.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,正确,不符合题意.
故选C.
10.【答案】:B
【解析】:.
故选:B.
【画龙点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.
11.【答案】:C
【解析】:∵ED∥BC,
∴∠EGB=∠GBC,∠DFC=∠FCB,
∵∠GBC=∠GBE,∠FCB=∠FCD,
∴∠EGB=∠EBG,∠DCF=∠DFC,
∴BE=EG,CD=DF,
∵FG=2,ED=6,
∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,
故选C.
12.【答案】:A
【解析】:因为,
所以,
因为,
所以,
联立方程组可得:
解方程组可得,
所以,
故选A.
13.【答案】:D
【解析】:∵△ABC≌△ADE,∠BAD=94°,
∴AB=AD,∠BAC=∠DAE,
∴∠ABD=∠ADB=×(180°﹣94°)=43°,
∵AE//BD,
∴∠DAE=∠ADB=43°,
∴∠BAC=∠DAE=43°.
故选:D.
14.【答案】:B
【解析】:解:四边形是长方形,
,
,
由题意可知,平分,
,
,
故选:B.
15.【答案】:B
【解析】:解:, 故A不符合题意;
不能用公式法分解因式,故B符合题意;
x2 2xy y2, 故C不符合题意;
, 故D不符合题意;
故选:B
16.【答案】:B
【解析】:解:∵三角形OAA1是等边三角形,
∴OA1=OA=2,∠AOA1=60°,
∴∠O1OA1=30°.
在直角△O1OA1中,∵∠OO1A1=90°,∠O1OA1=30°,
∴O1A1=OA1=1,即点A1的纵坐标为1,
同理,O2A2=O1A2=()1,O3A3=O2A3=()2,
即点A2的纵坐标为()1,
点A3的纵坐标为()2,
…
∴点A2023的纵坐标为()2022.
故选:B.
二. 填空题
17.【答案】: -1
【解析】:点与点关于轴对称,
,,
∴,
故答案为:.
18.【答案】: 20°或35°或27.5°
【解析】:由题意知△ABD与△DBC均为等腰三角形,
对于△ABD可能有①AB=BD,此时∠ADB=∠A=70°,
∴∠BDC=180°﹣∠ADB=180°﹣70°=110°,
∠C=(180°﹣110°)=35°,
②AB=AD,此时∠ADB=(180°﹣∠A)=(180°﹣70°)=55°,
∴∠BDC=180°﹣∠ADB=180°﹣55°=125°,
∠C=(180°﹣125°)=27.5°,
③AD=BD,此时,∠ADB=180°﹣2×70°=40°,
∴∠BDC=180°﹣∠ADB=180°﹣40°=140°,
∠C=(180°﹣140°)=20°,
综上所述,∠C度数可以为20°或35°或27.5°.
故答案为:20°或35°或27.5°
【画龙点睛】本题考查了等腰三角形的性质,难点在于分情况讨论.
19.【答案】:
【解析】:先利用同角的余角相等得到=,再通过证△ACD≌△CBE,得到即,再 利用三角形内角和得可得,最后利用角的和差即可得到答案,=.
证明:∵,
∴,
∴=
又∵,
∴
∴即
∵
∴即
∴=
故答案为:.
三.解答题
20【答案】:
(1)
(2)
【解析】:
【小问1详解】
解:原式
.
【小问2详解】
解:原式
.
21【答案】:
(1);
(2);
【解析】:
(1)解:方程两边同时乘以,得
解得,
检验:当时,,
所以原分式方程的解为
(2)解:原式
,
当时,原式.
22【答案】:
(1)见解析
(2)y轴,(﹣2,3)
(3)
(4)见解析
【解析】:
【小问1详解】
解:如图,△即为所求.
【小问2详解】
解:在图中,若与点关于一条直线成轴对称,则这条对称轴是直线,即为轴,此时点关于这条直线的对称点的坐标为.
故答案为:轴,.
【小问3详解】
解:△的面积为.
故答案为:.
【小问4详解】
解:如图,点即为所求.
【画龙点睛】本题考查作图轴对称变换,三角形的面积,解题的关键是掌握轴对称变换的性质,学会利用轴对称解决最短问题.
23【答案】:
(1)△BDE≌△CDA;(2)12x>5-3,
∴1
相关试卷
这是一份河北省磁县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省滦州市2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省涉县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。