所属成套资源:河北省各地区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
河北省邯郸市丛台区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省邯郸市丛台区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共23页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列图形中,是轴对称图形的是( )
A. B. C. D.
2. 下列各式中计算正确的是( )
A. B. C. D.
3. 某类新型冠状病毒的直径约为0.000000125米,将0.000000125米用科学记数法表示为( )
A. 米B. 米
C. 米D. 米
4. 若,则2n-3m的值是( )
A. -1B. 1C. 2D. 3
5. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )
A. 3B. 4C. 6D. 8
6. 某同学用5cm、7cm、9cm、13cm的四根小木棒摆出不同形状的三角形的个数为( )
A. 1B. 2C. 3D. 4
7. 如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,连接EN,作图痕迹中,△ODM≌△CEN根据的是( )
A. SASB. SSSC. ASAD. AAS
8. 一个三角形两边长分别为4和6,且第三边长为整数,这样的三角形的周长最小值是( )
A. 20B. 16C. 13D. 12
9. 如图将直尺与含30°角的三角尺摆放在一起,若,则的度数是( )
A. B. C. D.
10. 如图,在 ABC 中,ED / / BC ,ABC 和 ACB 的平分线分别交 ED 于点 G 、F ,若 FG 2 ,ED 6 ,则EB DC 的值为( )
A. 6B. 7
C. 8D. 9
11. 嘉淇在折幸运星时将一张长方形纸条折成了如图所示的样子(内部有一个正五边形),则∠1的度数为( )
A. 36°B. 54°C. 60°D. 72°
12. 如图,在长方形ABCD中,连接AC,以A为圆心,适当长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,大于的长为半径画弧,两弧在内交于点H,画射线AH交DC于点M.若,则的大小为( )
A. B. C. D.
13. 下列关于分式的判断中错误的是( )
A. 当时,有意义B. 当时,的值为0
C. 无论x为何值,的值总为正数D. 无论x为何值,不可能得整数值
14. 若,,则的值为( )
A. 4B. -4C. D.
15. 如图,直线m是△ABC中BC边的垂直平分线,点P是直线m上一动点,若AB=7,AC=6,BC=8,则△APC周长的最小值是( )
A. 13B. 14C. 15D. 13.5
16. 已知关于x的分式方程无解,则k的值为( )
A. 0B. 0或-1C. -1D. 0或
二.填空题(本大题共3题,总计 12分)
17. 当x=_________时,分式的值为0.
18. 如图,在锐角△ABC中,∠BAC 40°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM MN有最小值时,_____________°.
19. 如图,在正方形中,,延长到点,使,连接,动点从点出发,以每秒的速度沿向终点运动.设点的运动时间为秒,当和全等时,的值为 __.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. (1)因式分解:;
(2)化简:.
21. 先化简,再求值:,其中-2x2,请从x的范围中选入一个你喜欢的值代入,求此分式的值.
22. 如图,△ABC的三个顶点的坐标分别是,,.
(1)在图中画出△ABC关于x轴对称的
(2)分别写出点A,B,C三点关于y轴对称的点,,的坐标;
(3)△ABC的面积为______.
23. 如图,在△ABC中,射线AM平分∠BAC.
(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG;
(2)在(1)条件下,∠BAC和∠BGC有何数量关系?并证明你的结论.
24. 教科书中这样写道:“我们把多项式及叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.能解决一些与非负数有关的问题或求代数式最大值,最小值等.
例如:分解因式:.
原式=
例如.求代数式的最小值.
原式=,可知当时,有最小值,最小值是.
(1)分解因式:________;
(2)试说明:x、y取任何实数时,多项式的值总为正数;
(3)当m,n为何值时,多项式有最小值,并求出这个最小值.
25. 某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餍椅的总数量不超过200张.该商场计划将餐桌成套(一张餐桌和四张餐椅配成一套)销售,多余的桌或椅以零售方式销售.请问当进货量最大时获得的利润是多少?
26. 如图,△ABC中,AB=BC=AC=8cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒时,M、N两点重合?
(2)点M、N运动几秒时,可得到等边三角形△AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.
邯郸市丛台区2024-2025学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:B
【解析】:轴对称的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够相互重合,则称该图形为轴对称图形.
根据定义,B选项的图形符合题意.
故选B.
2.【答案】:D
【解析】:解:A、,则此项错误,不符合题意;
B、,则此项错误,不符合题意;
C、与不是同类项,不可合并,则此项错误,不符合题意;
D、,则此项正确,符合题意;
故选:D.
3.【答案】:B
【解析】:可知a=1.25,从左起第一个不为0的数字前面有7个0,所以n=7,
∴0.000000125=1.25×10−7 .
故选:B.
4.【答案】:B
【解析】:解:∵,
∴,
∴,
∴.
故选:B
5.【答案】:D
【解析】:解:∵正多边形的一个内角是135°,
∴该正多边形的一个外角为45°,
∵多边形的外角之和为360°,
∴边数=,
∴这个正多边形的边数是8.
故选:D.
6.【答案】:C
【解析】:解:四条木棒的所有组合:5,7,9和5,9,13和5,7,13和7,9,13;
只有5,7,9和5,9,13和7,9,13能组成三角形.
故选:C.
7.【答案】:B
【解析】:解:根据题意得:,
∴△ODM≌△CEN的依据是“”,
故选:B.
8.【答案】:C
【解析】:解:设三角形的第三边为x,
∵三角形的两边长分别为4和6,
∴2<x<10,
∵第三边为整数,
∴第三边x的最小值为3,
∴三角形周长的最小值为:3+4+6=13.
故选:C
9.【答案】:C
【解析】:如图,
∵∠BEF是△AEF的外角,∠1=20,∠F=30,
∴∠BEF=∠1+∠F=50,
∵AB∥CD,
∴∠2=∠BEF=50,
故选:C.
10.【答案】:C
【解析】:∵ED∥BC,
∴∠EGB=∠GBC,∠DFC=∠FCB,
∵∠GBC=∠GBE,∠FCB=∠FCD,
∴∠EGB=∠EBG,∠DCF=∠DFC,
∴BE=EG,CD=DF,
∵FG=2,ED=6,
∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,
故选C.
11.【答案】:D
【解析】:∵折的图形为正五边形,
∴∠2= =108°,
又∵长方形纸片对边平行,
∴∠1+∠2=180°,
∠1=180°-∠2=180°-108°=72°
故选D.
12.【答案】:B
【解析】:解:四边形是长方形,
,
,
由题意可知,平分,
,
,
故选:B.
13.【答案】:D
【解析】:A选项,当时,有意义,故不符合题意;
B选项,当时,的值为0,故不符合题意;
C选项,,则无论x为何值,的值总为正数,故不符合题意;
D选项,当时,,故符合题意;
故选:D.
14.【答案】:A
【解析】:因为,
所以,
因为,
所以,
联立方程组可得:
解方程组可得,
所以,
故选A.
15.【答案】:A
【解析】:∵直线m是△ABC中BC边的垂直平分线,
∴BP=PC
∴△APC周长=AC+AP+PC=AC+AP+BP
∵两点之间线段最短,
∴AP+BP≥AB
∴△APC的周长=AC+AP+BP≥AC+AB
∵AC=6,AB=7
∴△APC周长最小为AC+AB=13
故选:A.
16.【答案】:D
【解析】:解:分式方程去分母得: ,即 ,
当,即 时,方程无解;
当x=-1时,-3k+1=-3k,此时k无解;
当x=0时,0=-3k,k=0,方程无解;
综上,k的值为0或 .
故答案为:D.
二. 填空题
17.【答案】: 2
【解析】:∵分式的值为0,
∴x2-4=0,x+2≠0,
解得:x=2.
故答案为:2.
18.【答案】: 50
【解析】:如图,在AC上截取AE=AN,连接BE,
∵∠BAC的平分线交BC于点D,
∴∠EAM=∠NAM,
∵AM=AM,
∴△AME≌△AMN,
∴ME=MN,
∴BM+MN=BM+ME≥BE.
∵BM+MN有最小值.
当BE是点B到直线AC的距离时,BE⊥AC,
∴∠ABM=90°-∠BAC=90°-40°=50°;
故答案为:50.
19.【答案】: 2或7
【解析】:∵正方形ABCD,
∴
是直角三角形,
为直角三角形,
点只能在上或者上,
当点在上时,如图,当时,有,
,
,
,
当点在上时,则当时,有,
,
故答案为:2或7.
三.解答题
20【答案】:
(1);
(2)
【解析】:
解:(1)原式=
;
(2)原式=
.
21【答案】:
, 0
【解析】:
=
=-
当x=1时,
原式=-.
22【答案】:
(1)见解析;(2)、、;(3)2.5.
【解析】:
解:(1)如图,即是所作的图形;
(2),,
点A,B,C三点关于y轴对称点,,的坐标为:
、、;
(3)如图,
故答案为:.
.
23【答案】:
(1)详见解析;(2)∠BAC+∠BGC=180°,证明详见解析.
【解析】:
解:(1)线段BC的中垂线EG如图所示:
(2)结论:∠BAC+∠BGC=180°.
理由:在AB上截取AD=AC,连接DG.
∵AM平分∠BAC,
∴∠DAG=∠CAG,
在△DAG和△CAG中
∵
∴△DAG≌△CAG(SAS),
∴∠ADG=∠ACG,DG=CG,
∵G在BC的垂直平分线上,
∴BG=CG,
∴BG=DG,
∴∠ABG=∠BDG,
∵∠BDG+∠ADG=180°,
∴∠ABG+∠ACG=180°,
∵∠ABG+∠BGC+∠ACG+∠BAC=360°,
∴∠BAC+∠BGC=180°.
24【答案】:
(1)
(2)见解析
(3)当时,多项式有最小值
【解析】:
【小问1详解】
解:
;
故答案为:
【小问2详解】
解:
,
∵,
∴,
∴原式的值总为正数;
【小问3详解】
解:
当,即时,
原式取最小值-3.
∴当时,多项式有最小值.
25【答案】:
(1)150
(2)当进货量最大时获得的利润是7200元
【解析】:
(1)根据题意确定等量关系列方程即可.
(2)首先设购进桌子的数量为x,求出其取值范围,再列出总利润和x的函数关系,根据一次函数性质求最大值即可.
【小问1详解】
解:根据题意,得:,解得:
经检验符合实际且有意义.
∴表中a的值为150.
【小问2详解】
解:设餐桌购进x张,则餐椅购进张,
依题意列:
解得:
设利润为W元,
则
∵
∴W随x的增大而增大
∴当 x=30时,W 有最大值
此时 .
答:当进货量最大时获得的利润是7200元.
【画龙点睛】本题考查了分式方程和一元一次不等式以及一次函数的性质,解题的关键是理解题意,找出等量关系列出方程,再根据一次函数性质求最大利润.
26【答案】:
(1)点M,N运动8秒时,M、N两点重合;
(2)点M、N运动秒时,可得到等边三角形△AMN;
(3)当M、N运动秒时,得到以MN为底边的等腰三角形AMN
【解析】:
【小问1详解】
解:设运动t秒,M、N两点重合,
根据题意得:2t﹣t=8,
∴t=8,
答:点M,N运动8秒时,M、N两点重合;
【小问2详解】
解:设点M、N运动x秒时,可得到等边三角形△AMN,
∵△AMN是等边三角形,
∴AN=AM,
∴x=8﹣2x,
解得:x=,
∴点M、N运动秒时,可得到等边三角形△AMN;
【小问3详解】
设M、N运动y秒时,得到以MN为底边的等腰三角形AMN.
∵△ABC是等边三角形,
∴AB=AC,∠C=∠B=60°,
∵△AMN是以MN为底边的等腰三角形,
∴AM=AN,
∴∠AMN=∠ANM,
∵∠C=∠B,AC=AB,
∴△ACN≌△ABM(AAS),
∴CN=BM,
∴CM=BN,
∴y﹣8=8×3﹣2y,
∴y=.
答:当M、N运动秒时,得到以MN为底边等腰三角形AMN
【画龙点睛】本题是三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,利用方程的思想解决问题是本题的关键.原进价(元/张)
零售价(元/张)
成套售价(元/套)
餐桌
a
270
500元
餐椅
70
相关试卷
这是一份河北省邯郸市邯山区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省邯郸市肥乡区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共23页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省邯郸市永年区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。