![河北省高邑县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)第1页](http://www.enxinlong.com/img-preview/2/3/16505914/0-1733901117334/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河北省高邑县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)第2页](http://www.enxinlong.com/img-preview/2/3/16505914/0-1733901117391/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河北省高邑县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)第3页](http://www.enxinlong.com/img-preview/2/3/16505914/0-1733901117412/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:河北省各地区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
河北省高邑县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省高邑县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 自新冠肺炎疫情发生以来,全国人民共同抗疫,靖江市积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( )
A. B. C. D.
2. 下列运算错误的是( )
A. B. C. D. a2÷a3=a-1 (a≠0)
3. 如图所示是番茄果肉细胞结构图,番茄果肉细胞的直径约为0.0006米,将0.0006米用科学记数法表示为( )
A. 6×10-4米B. 6×10-3米C. 6×104米D. 6×10-5米
4. 如图,∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是( )
A. AC=ADB. AC=BCC. ∠ABC=∠ABDD. ∠BAC=∠BAD
5. 若M=(x-3)(x-4),N=(x-1)(x-6),则M与N的大小关系为()
A. M>NB. M=NC. M<ND. 由x的取值而定
6. 一副三角板按如图所示叠放在一起,则图中的度数为( )
A. B. C. D.
7. 如图,要测量池塘两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使BC=CD.再作出BF的垂线DE,使A,C,E三点在一条直线上,通过证明ΔABC≌ΔEDC,得到DE的长就等于AB的长,这里证明三角形全等的依据是( )
A. HLB. SASC. SSSD. ASA
8. 如图,四边形ABCD中,,,连接BD,BD⊥CD,垂足是D且,点P是边BC上的一动点,则DP的最小值是( )
A. 1B. 2C. 3D. 4
9. 如图,在长方形ABCD中,连接AC,以A为圆心,适当长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,大于的长为半径画弧,两弧在内交于点H,画射线AH交DC于点M.若,则的大小为( )
A. B. C. D.
10. 如图,△ABC中,,,,则△ABC的周长为( )
A. 9B. 8C. 6D. 12
11. 计算a﹣2b2•(a2b﹣2)﹣2正确的结果是( )
A. B. C. a6b6D.
12. 如图,△ABC中,∠A=40°,AB的垂直平分线分别交AB,AC于点D,E,连接BE,则∠BEC的大小为( )
A. 40°B. 50°C. 80°D. 100°
13. 如图,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,则不正确的结论是( ).
A. Rt△ACD和Rt△BCE全等B. OA=OB
C. E是AC的中点D. AE=BD
14. 若一个凸多边形的每一个外角都等于36°,则这个多边形的内角和是( )
A. 1080°B. 1260°C. 1440°D. 1620°
15. 如图,等边的边长为4,是边上的中线,是边上的动点,是边上一点,若,当取得最小值时,则的度数为( )
A. B. C. D.
16. 一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是( )(用含a,b的代数式表示).
A. abB. 2abC. a2﹣abD. b2+ab
二.填空题(本大题共3题,总计 12分)
17. 若,则分式__.
18. 将等边三角形、正方形、正五边形按如图所示的位置摆放,如果,,那么的度数等于________.
19. 在学习了负整数指数幂的知识后,小明和小军两同学做了一个数学游戏,小明出了题目:将的结果化为只含有正整数指数幂的形式,其结果为,则“*”处的数是多少?聪明的你替小军填上“*”处的数是___________.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 计算:
(1)
(2)
21. 先化简,再求值,其中|x|=2.
22. 已知△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的,并写出各顶点的坐标;
(2)将△ABC向右平移6个单位长度,作出平移后的,并写出各顶点的坐标;
(3)观察与,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.
23. 已知在△ABC中,,,是△ABC的高,分别交,于点E,F.
(1)如图1,若,且,求的度数;
(2)如图2,若.
①求的度数;
②求证:.
24. 【阅读】下列是多项式因式分解的过程:.请利用上述方法解决下列问题.
【应用】
(1)因式分解:;
(2)若x>5,试比较与0的大小关系;
(3)【灵活应用】若,求的值.
25. 甘蔗富含铁、锌等人体必需的微量元素,素有“补血果”的美称,是冬季热销的水果之一.为此,某水果商家12月份第一次用600元购进云南甘蔗若干千克,销售完后,他第二次又用600元购进该甘蔗,但这次每千克的进价比第一次的进价提高了,所购进甘蔗的数量比第一次少了.
(1)该商家第一次购进云南甘蔗的进价是每千克多少元?
(2)假设商家两次购进的云南甘蔗按同一价格销售,要使销售后获利不低于1000元,则每千克的售价至少为多少元?
26. 如图,△ABC中,AB=BC=AC=8cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒时,M、N两点重合?
(2)点M、N运动几秒时,可得到等边三角形△AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.
高邑县2024-2025学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:A、不是轴对称图形,不合题意;
B、不是轴对称图形,不合题意;
C、是轴对称图形,符合题意;
D、不是轴对称图形,不合题意.
故选:C.
2.【答案】:A
【解析】:A. ,故该选项不正确,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. a2÷a3=a-1 (a≠0) ,故该选项正确,不符合题意;
故选:A.
3.【答案】:A
【解析】:解:0.0006=6×10-4,
故选:A.
4.【答案】:A
【解析】:解: 需要添加条件为:BC= BD或AC= AD,理由为:
若添加的条件为:BC= BD
在Rt△ABC与Rt△ABD中,
∴Rt△ABC≌Rt△ABD(HL) ;
若添加的条件为:AC=AD
在Rt△ABC与Rt△ABD中,
∴Rt△ABC≌Rt△ABD( HL).
故选:A.
5.【答案】:A
【解析】:解: M=(x-3)(x-4)=
N=(x-1)(x-6)=
即:
故选:A.
6.【答案】:B
【解析】:如图所示:
由题意得,∠ABD=60°,∠C=45°,
∴∠α=∠ABD−∠C=15°,故B正确.
故选:B.
【画龙点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
7.【答案】:D
【解析】:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC=90,∠ACB=∠ECD,
所以用到的是两角及这两角的夹边对应相等即ASA这一方法.
故选D
8.【答案】:C
【解析】:解:∵BD⊥CD,∠A=90°
∴∠ABD+∠ADB=90°,
∠CBD+∠C=90°,
∵∠ADB=∠C ,
∴∠ABD=∠CBD,
由垂线段最短得,DP⊥BC时DP最小,
此时,DP=AD=3.
故选:C.
9.【答案】:B
【解析】:解:四边形是长方形,
,
,
由题意可知,平分,
,
,
故选:B.
10.【答案】:D
【解析】:解:在△ABC中,
, ,
,
,
∴△ABC为等边三角形,
,
∴△ABC的周长为:,
故答案为:D.
11.【答案】:B
【解析】:原式=,
故选B.
【画龙点睛】本题考查了幂的混合运算,掌握幂的运算法则是解题的关键.
12.【答案】:C
【解析】:∵线段AB的垂直平分线交AB于D,交AC于E,
∴AE=BE,
∴∠ABE=∠A=40°,
∵∠BEC=∠A+∠ABE
∴∠BEC=40°+40°=80°.
故选:C.
13.【答案】:C
【解析】:解:A.∵∠C=∠C=90°,
∴△ACD和△BCE是直角三角形,
在Rt△ACD和Rt△BCE中,
∵AD=BE,DC=CE,
∴Rt△ACD≌Rt△BCE(HL),正确;
B.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,
在△AOE和△BOD中,
∵
∴△AOE≌△BOD(AAS),
∴AO=OB,正确,不符合题意;
C.AE=BD,CE=CD,不能推出AE=CE,错误,符合题意;
D.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,正确,不符合题意.
故选C.
14.【答案】:C
【解析】:该多边形的变数为
此多边形内角和为
故选C
15.【答案】:C
【解析】:作点E关于AD对称的点M,连接CM,与AD交于点F,
∵△ABC是等边三角形,AD⊥BC,
∴M在AB上,
∴MF=EF,
∴EF+CF=MF+CF=CM,
即此时EF+CF最小,且为CM,
∵AE=2,
∴AM=2,即点M为AB中点,
∴∠ECF=30°,
故选C.
【画龙点睛】本题考查了轴对称最短路线问题,等边三角形的性质,等腰三角形的性质等知识点的应用,找到CM是解题的关键.
16.【答案】:A
【解析】:解:设小正方形的边长为x,则大正方形的边长为a﹣2x=2x+b,
可得x=,大正方形边长为=,
则阴影部分面积为()2﹣4()2==ab,
故选:A.
二. 填空题
17.【答案】: 1
【解析】:原分式,
,
.
故答案为:1.
18.【答案】:
【解析】:等边三角形的每个内角的度数为,
正方形的每个内角的度数为,
正五边形的每个内角的度数为,
如图,△ABC的外角和等于,
,
即,
,
又,
,
解得,
故答案为:.
19.【答案】:
【解析】:解:
由题意得,
故答案为:.
三.解答题
20【答案】:
(1)
(2)
【解析】:
【小问1详解】
解:原式
.
【小问2详解】
解:原式
.
21【答案】:
,
【解析】:
=
=
=
=;
∵,
∴,
∵,
∴,
∴原式=.
22【答案】:
(1)见解析,,;
(2)见解析,,,;
(3)是,见解析
【解析】:
解:(1)如图所示,关于y轴对称的图形为,
根据点在坐标系中的位置可得:,;
(2)如(1)中图所示,为平移后图形,,,;
(3)是,如图(1)中所示,连接,,找到中点D、E,连接可得对称轴为直线.
23【答案】:
(1)30° (2)①;②见解析
【解析】:
【小问1详解】
∵BF⊥AC,
∴∠AFB=90°,
∵∠BAC=45°,
∴∠ABF=90°-∠BAC=45°,
∵∠BDE=75°,
∴∠BAE=∠BDE-∠ABF=30°;
【小问2详解】
①∵∠ABC=∠C,
∴AB=AC,
∵AE⊥BC,
∴AE平分∠BAC,
∴∠BAE=∠CAE=∠BAC=22.5°;
②证明:∵∠BAC=45°,BF⊥AC,
∴∠AFB=90°,
∴∠ABF=∠BAC=45°,
∴FA=FB,
∵BF⊥AC,AE⊥BC,
∴∠CFB=∠AFD=∠AEC=90°,
∴∠C+∠CAE=90°,∠ADF+∠CAE=90°,
∴∠ADF=∠C,
在△ADF和△BCF中,
,
∴△ADF≌△BCF(AAS).
24【答案】:
(1)
(2)
(3)5
【解析】:
【小问1详解】
解:,
【小问2详解】
解:,,
∴x+1>0,x-5>0,
,
;
【小问3详解】
解:,
,
∵,
∴,
∴a=1,,
.
25【答案】:
(1)2元;(2)4元.
【解析】:
(1)设该商家第一次购买云南甘蔗的进价是每千克元,
根据题意可知:,
,
经检验,是原方程的解,
答:该商家第一次购买云南甘蔗的进价是每千克2元;
(2)设每千克的售价为元,
第一次销售了千克,第二次销售了250千克,
根据题意可知:
,
解得:,
答:每千克的售价至少为4元.
【画龙点睛】本题考查分式方程的应用,解题的关键是正确找出题中的等量关系.
26【答案】:
(1)点M,N运动8秒时,M、N两点重合;
(2)点M、N运动秒时,可得到等边三角形△AMN;
(3)当M、N运动秒时,得到以MN为底边的等腰三角形AMN
【解析】:
【小问1详解】
解:设运动t秒,M、N两点重合,
根据题意得:2t﹣t=8,
∴t=8,
答:点M,N运动8秒时,M、N两点重合;
【小问2详解】
解:设点M、N运动x秒时,可得到等边三角形△AMN,
∵△AMN是等边三角形,
∴AN=AM,
∴x=8﹣2x,
解得:x=,
∴点M、N运动秒时,可得到等边三角形△AMN;
【小问3详解】
设M、N运动y秒时,得到以MN为底边的等腰三角形AMN.
∵△ABC是等边三角形,
∴AB=AC,∠C=∠B=60°,
∵△AMN是以MN为底边的等腰三角形,
∴AM=AN,
∴∠AMN=∠ANM,
∵∠C=∠B,AC=AB,
∴△ACN≌△ABM(AAS),
∴CN=BM,
∴CM=BN,
∴y﹣8=8×3﹣2y,
∴y=.
答:当M、N运动秒时,得到以MN为底边等腰三角形AMN
【画龙点睛】本题是三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,利用方程的思想解决问题是本题的关键.
相关试卷
这是一份河北省赵县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省蠡县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共26页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省磁县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。