北师大版(2024)九年级下册2 二次函数的图像与性质学案
展开
这是一份北师大版(2024)九年级下册2 二次函数的图像与性质学案,共4页。学案主要包含了作二次函数y=x2的图象.,议一议,y=x2的图象的性质,例题,练习等内容,欢迎下载使用。
经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究二次函数性质的经验.掌握利用描点法作出y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质.能够作为二次函数y=-x2的图象,并比较它与y=x2图象的异同,初步建立二次函数表达式与图象之间的联系.
学习重点:
利用描点法作出y=x2的图象过程中,理解掌握二次函数y=x2的性质,这是掌握二次函数y=ax2+bx+c(a≠0)的基础,是二次函数图象、表达式及性质认识应用的开始,只有很好的掌握,才会把二次函数学好.只要注意图象的特点,掌握本质,就可以学好本节.
学习难点:
函数图象的画法,及由图象概括出二次函数y=x2性质,它难在由图象概括性质,结合图象记忆性质.
学习过程:
一、作二次函数y=x2的图象.
二、议一议:
1.你能描述图象的形状吗?与同伴交流.
2.图象与x轴有交点吗?如果有,交点的坐标是什么?
3.当x0时呢?
4.当x取什么值时,y的值最小?
5.图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.
三、y=x2的图象的性质:
四、例题:
【例1】已知a<-1,点(a-1,y1)、(a,y2)、(a+1,y3)都在函数y=x2的图象上,则( )
A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y3
例2.求直线y=x与抛物线y=x2的交点坐标.
五、练习
1.函数y=x2的顶点坐标为 .若点(a,4)在其图象上,则a的值是 .
2.若点A(3,m)是抛物线y=-x2上一点,则m= .
3.函数y=x2与y=-x2的图象关于 对称,也可以认为y=-x2,是函数y=x2的图象绕 旋转得到.
4.若二次函数y=ax2(a≠0),图象过点P(2,-8),则函数表达式为 .
5.函数y=x2的图象的对称轴为 ,与对称轴的交点为 ,是函数的顶点.
6.点A(,b)是抛物线y=x2上的一点,则b= ;点A关于y轴的对称点B是 ,它在函数 上;点A关于原点的对称点C是 ,它在函数 上.
7.若a>1,点(-a-1,y1)、(a,y2)、(a+1,y3)都在函数y=x2的图象上,判断的大小关系?
8.如图,A,B分别为y=x2上两点,且线段AB⊥y轴,若AB=6,则直线AB的表达式为( )
A.y=3 B.y=6 C.y=9 D.y=36
相关学案
这是一份初中数学北师大版(2024)九年级下册2 二次函数的图像与性质导学案,共8页。学案主要包含了复习回顾,新课学习,尝试应用,达标测试等内容,欢迎下载使用。
这是一份初中数学北师大版七年级上册2.2 数轴学案,共3页。学案主要包含了学习目标,学习重难点,学习过程,达标检测,自我评价等内容,欢迎下载使用。
这是一份初中数学北师大版七年级上册第二章 有理数及其运算2.2 数轴学案设计,共3页。学案主要包含了学习目标,学习重点,学习过程,学习小结,达标检测等内容,欢迎下载使用。