所属成套资源:2025年高考数学一轮复习课件
70 第8章 第8课时 抛物线-2025年高考数学一轮复习课件
展开
这是一份70 第8章 第8课时 抛物线-2025年高考数学一轮复习课件,共42页。PPT课件主要包含了第8课时抛物线,考试要求,链接教材夯基固本,典例精研核心考点等内容,欢迎下载使用。
掌握抛物线的定义、几何图形、标准方程
掌握抛物线的简单几何性质(范围、对称性、顶点、离心率).
了解抛物线的简单应用.
1.抛物线的概念把平面内与一个定点F和一条定直线l(l不经过点F)的距离____的点的轨迹叫做抛物线,点F叫做抛物线的____,直线l叫做抛物线的____.
2.抛物线的标准方程与几何性质
3.(人教A版选择性必修第一册P135例4改编)过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|等于( )A.9 B.8 C.7 D.6B [抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意可得,|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.]4.(人教A版选择性必修第一册P134例3改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(-2,-4),则该抛物线的标准方程为__________________.y2=-8x或x2=-y [设抛物线方程为y2=2px(p≠0)或x2=2py(p≠0).将P(-2,-4)代入,分别得方程为y2=-8x或x2=-y.]
y2=-8x或x2=-y
考点一 抛物线的定义及应用考向1 动点轨迹的判定[典例1] (1)在平面直角坐标系Oxy中,动点P(x,y)到直线x=1的距离比它到定点(-2,0)的距离小1,则P的轨迹方程为( )A.y2=2x B.y2=4xC.y2=-4x D.y2=-8x(2)动圆与定圆A:(x+2)2+y2=1外切,且和直线x=1相切,则动圆圆心的轨迹是( )A.直线 B.椭圆C.双曲线 D.抛物线
(1)D (2)D [(1)由题意知动点P(x,y)到直线x=2的距离与定点(-2,0)的距离相等,由抛物线的定义知,P的轨迹是以(-2,0)为焦点,x=2为准线的抛物线,所以p=4,轨迹方程为y2=-8x.故选D.(2)设动圆的圆心为点C,半径为r,则点C到定圆A:(x+2)2+y2=1的圆心的距离等于r+1.又动圆的圆心到直线x=1的距离等于r,所以动圆的圆心到直线x=2的距离为r+1.根据抛物线的定义知,动圆圆心的轨迹为抛物线.故选D.]
考向2 抛物线上的点到定点的距离及最值[典例2] (1)(2023·北京高考)已知抛物线C:y2=8x的焦点为F,点M在C上,若M到直线x=-3的距离为5,则|MF|=( )A.7 B.6 C.5 D.4(2)已知点M(20,40)不在抛物线C:y2=2px(p>0)上,抛物线C的焦点为F.若对于抛物线上的一点P,|PM|+|PF|的最小值为41,则p的值等于________.(1)D (2)42或22 [(1)如图所示,因为点M到直线x=-3的距离|MR|=5,所以点M到直线x=-2的距离|MN|=4.又抛物线上点M到准线x=-2的距离和到焦点F的距离相等,故|MF|=|MN|=4.故选D.
名师点评 抛物线定义的应用规律
名师点评 1.求抛物线的标准方程的方法(1)定义法.(2)待定系数法:当焦点位置不确定时,为避免过多的讨论,通常依据焦点所在的位置,将抛物线的标准方程设为y2=ax(a≠0)或x2=ay(a≠0).2.抛物线性质的应用要树立两个意识(1)转化意识:“见准线想焦点,见焦点想准线”.(2)图形意识:借助平面图形的性质简化运算.
[跟进训练]2.(1)(2023·湖北武汉二模)设抛物线y2=6x的焦点为F,准线为l,P是抛物线上位于第一象限内的一点,过P作l的垂线,垂足为Q,若直线QF的倾斜角为120°,则|PF|=( )A.3 B.6 C.9 D.12(2)如图所示,过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=4,则抛物线的方程为( )A.y2=8x B.y2=4x C.y2=2x D.y2=x(3)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为________.
【教师备选资源】(2023·广东佛山二模)已知方程Ax2+By2+Cxy+Dx+Ey+F=0,其中A≥B≥C≥D≥E≥F.现有四位同学对该方程进行判断,提出了四个命题:甲:可以是圆的方程;乙:可以是抛物线的方程;丙:可以是椭圆的标准方程;丁:可以是双曲线的标准方程.其中真命题有( )A.1个 B.2个 C.3个 D.4个
名师点评 解决直线与抛物线位置关系问题的方法(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系,采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.(3)重视在选择、填空题中有关结论的灵活应用.
[跟进训练]3.(1)(2024·广东深圳模拟)已知F为抛物线C:y2=4x的焦点,直线l:y=k(x+1)与C交于A,B两点(A在B的左边),则4|AF|+|BF|的最小值是( )A.10 B.9 C.8 D.5(2)(多选)(2022·新高考Ⅰ卷)已知O为坐标原点,点A(1,1)在抛物线C:x2=2py(p>0)上,过点B(0,-1)的直线交C于P,Q两点,则( )A.C的准线为y=-1B.直线AB与C相切C.|OP|·|OQ|>|OA|2D.|BP|·|BQ|>|BA|2
[典例2] (2021·全国乙卷)已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p的值;(2)若点P在圆M上,PA,PB是抛物线C的两条切线,A,B是切点,求△PAB面积的最大值.
巩固课堂所学 · 激发学习思维夯实基础知识 · 熟悉命题方式自我检测提能 · 及时矫正不足
本节课掌握了哪些考点?本节课还有什么疑问点?
课时分层作业(五十八) 抛物线(一)
课时分层作业(五十九) 抛物线(二)
相关课件
这是一份2025年高考数学一轮知识点复习-第8课时-抛物线(一)【课件】,共60页。PPT课件主要包含了授人以渔,课外阅读等内容,欢迎下载使用。
这是一份2024届高考数学一轮复习第8章第7节抛物线课件,共38页。
这是一份高考数学一轮复习第8章微课堂抛物线的重要结论课件,共12页。