所属成套资源:北师大版数学九上期末重难点培优训练 (2份,原卷版+解析版)
北师大版数学九上期末重难点培优训练专题18 反比例函数与几何图形的综合应用(2份,原卷版+解析版)
展开
这是一份北师大版数学九上期末重难点培优训练专题18 反比例函数与几何图形的综合应用(2份,原卷版+解析版),文件包含北师大版数学九上期末重难点培优训练专题18反比例函数与几何图形的综合应用原卷版doc、北师大版数学九上期末重难点培优训练专题18反比例函数与几何图形的综合应用解析版doc等2份试卷配套教学资源,其中试卷共88页, 欢迎下载使用。
考点一 反比例函数与三角形的综合应用 考点二 反比例函数与平行四边形的综合应用
考点三 反比例函数与矩形的综合应用 考点四 反比例函数与菱形的综合应用
考点五 反比例函数与正方形的综合应用
考点一 反比例函数与三角形的综合应用
例题:(2022·江西·崇仁县第二中学二模)如图,在等腰三角形AOB中,AO=AB,点O是平面直角坐标系原点,点A在反比例函数的图象上,已知OA=5,OB=6.
(1)求反比例函数的解析式;
(2)过点A作AP垂直OA,交反比例函数的图象于点P,交x轴于点C.
①求直线AC的解析式;
②求点P的坐标.
【变式训练】
1.(2022·山东东营·中考真题)如图,是等腰直角三角形,直角顶点与坐标原点重合,若点B在反比例函数的图象上,则经过点A的反比例函数表达式为____________.
2.(2022·江苏·淮安市淮安区教师发展中心学科研训处模拟预测)如图,把一个等腰直角三角形ACB放在平面直角坐标系中,∠ACB=90°,点C(﹣2,0),点B在反比例函数的图象上,且y轴平分∠BAC,则k的值是________.
3.(2022·陕西省西安高新逸翠园学校模拟预测)如图,平面直角坐标系中,△OAB和△BCD都是等腰直角三角形,且∠A=∠C=90°,点B、D都在x轴上,点A、C都在反比例函数y=(x>0)的图象上,则点C的横坐标为________.
4.(2022·贵州黔东南·中考真题)如图,在平面直角坐标系中,等腰直角三角形的斜边轴于点,直角顶点在轴上,双曲线经过边的中点,若,则______.
5.(2022·贵州铜仁·九年级期末)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.
(1)求a和k的值;
(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.
①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求的值;
②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三角形,求所有满足条件的m的值.
6.(2022·河南新乡·八年级期中)如图,在平面直角坐标系中,点,分别在反比例函数和的图象上,轴于点,轴于点,是线段的中点,,.
(1)求反比例函数的表达式;
(2)连接,,,求的面积;
(3)是线段上的一个动点,是线段上的一个动点,试探究是否存在点,使得是等腰直角三角形?若存在,求所有符合条件点的坐标;若不存在,请说明理由.
考点二 反比例函数与平行四边形的综合应用
例题:(2022·河南南阳·八年级期中)已知,如图,在平面直角坐标系中,点A(2,0),C(-1,2)是平行四边形OABC的两个顶点,反比例函数的图像经过点B.
(1)求出反比例函数的表达式;
(2)将平行四边形OABC沿着x轴翻折,点C落在点D处,判断点D是否在反比例函数的图像上,并说明理由;
(3)在x轴上是否存在一点P,使是以OC为腰的等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
【变式训练】
1.(2022·重庆·巴川初级中学校九年级期末)如图,平行四边形ABCD的BC边过原点O,顶点D在x轴上,反比例函数的图象过AD边上的A,E两点,已知平行四边形ABCD的面积为8,,则k的值为______.
2.(2022·福建泉州·八年级期中)如图,点D是平行四边形内一点,轴,轴,且,,,若反比例函数的图象经过A、D两点,则k的值是______.
3.(2021·河北保定·九年级期末)如图,平行四边形OABC的边OC在y轴上,对角线AC,OB交于点D,函数的图象经过点和点D.
(1)求k值和点D的坐标;
(2)求平行四边形OABC的周长.
4.(2022·河南南阳·八年级期中)如图,已知平行四边形ABCD的顶点A、C在反比例函数的图象上,顶点B、D在轴上. 已知点、.
(1)直接写出点C、D的坐标;
(2)求反比例函数的解析式;
(3)求平行四边形ABCD的对角线AC、BD的长;
(4)求平行四边形ABCD的面积S.
5.(2021·湖南永州·九年级期中)如图1,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,点A的坐标为,反比例函数在第一象限内的图像经过点A,与BC相交于F.
(1)若,求反比例函数的关系式.
(2)若点F为BC的中点,且△AOF的面积S=9,求OA的长和点C的坐标;
(3)在(2)的条件下,过点F作EF∥OB,交OA于点E(如图2),点P为直线EF上的一个动点,连接PA,PO.是否存在这样的点P、使以P、O、A为顶点的三角形是以OA为斜边的直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
6.(2022·江苏连云港·八年级期末)如图1,已知,,平行四边形的边、分别与轴、轴交于点、,且点为中点,双曲线为常数,上经过、两点.
(1)求的值;
(2)如图2,点是轴正半轴上的一个动点,过点作轴的垂线,分别交反比例函数为常数,图像于点,交反比例函数的图像于点,当时,求点坐标;
(3)点在双曲线上,点在轴上,若以点、、、为顶点的四边形是平行四边形,试求出满足要求的所有点的坐标.
考点三 反比例函数与矩形的综合应用
例题:(2022·江苏省锡山高级中学实验学校八年级期中)如图1,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=(k>0)的第一象限内的图像上,OA=6,OC=4,动点P在y轴的右侧,且满足S△PCO=S矩形OABC.
(1)若点P在这个反比例函数的图像上,求点P的坐标;
(2)若点Q是平面内一点,使得以B、C、P、Q为顶点的四边形是菱形,请你直接写出满足条件的所有点Q的坐标.
【变式训练】
1.(2022·河南南阳·八年级期末)如图,在平面直角坐标系中,反比例函数的图象和矩形ABCD在第一象限,AD平行于x轴,且,,点A的坐标为(2,6).将矩形向下平移,若矩形的两个顶点恰好同时落在反比例函数的图象上,则矩形的平移距离a的值为( )
A.B.C.D.
2.(2022·浙江宁波·八年级期末)如图,矩形OABC被三条直线分割成六个小矩形,若D、E是CO边上的三等分点,反比例函数刚好经过小矩形的顶点F、G,若图中的阴影矩形面积,则反比例系数k的值为__.
3.(2022·福建泉州·八年级期末)如图,矩形的边、分别在轴、轴的正半轴上,点在反比例函数的图象上,且.将矩形以点为旋转中心,顺时针旋转后得到矩形,函数的图象刚好经过的中点,交于点.
(1)求该反比例函数关系式;
(2)求的面积.
4.(2022·四川雅安·九年级专题练习)如图,在矩形中,,,点是边的中点,反比例函数的图像经过点,交于点.
(1)求的值及直线的解析式;
(2)在轴上找一点,使的周长最小,求此时点的坐标;
(3)在(2)的条件下,求的面积.
5.(2022·江苏宿迁·八年级期末)如图,矩形的顶点、分别在、轴的正半轴上,点在反比例函数的第一象限内的图像上,,,动点在轴的上方,且满足.
(1)若点在这个反比例函数的图像上,求点的坐标;
(2)连接、,求的最小值;
(3)若点是平面内一点,使得以、、、为顶点的四边形是菱形,则请你直接写出满足条件的所有点的坐标.
6.(2022·全国·九年级单元测试)如图,四边形OABC是矩形,点A的坐标为(0,6)点C的坐标为(4,0),点P从点A出发,沿AB以每秒2个单位长度的速度向点B出发,同时点Q从点B出发,沿BC以每秒3个单位长度的速度向点C运动,当点P与点B重合时,点P、Q同时停止运动.设运动时间为t秒.
(1)当t=1时,请直接写出△BPQ的面积为 ;
(2)当△BPQ与△COQ相似时,求t的值;
(3)当反比例函数y= (x> 0)的图象经过点P、Q两点时.
①求k的值;
②点M在x轴上,点N在反比例函数y= 的图象上,若以点M、N、P、Q为顶点的四边形是平行四边形,请直接写出所有满足条件的M的坐标.
考点四 反比例函数与菱形的综合应用
例题:(2022·四川遂宁·八年级期末)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数的图像上,点D的坐标为(4,3),设AB所在直线解析式为.
(1)求反比例和一次函数解析式.
(2)若将菱形ABCD沿x轴正方向平移m个单位,在平移中若反比例函数图像与菱形的边AD始终有交点,求m的取值范围.
(3)在直线AB上是否存在M、N两点,使以MNOD四点的四边形构成矩形?若不存在,请说明理由,若存在直接求出M、N(点M在点N的上方)两点的坐标.
【变式训练】
1.(2022·江苏·苏州市胥江实验中学校八年级期中)图,在平面直角坐标系中,边长为4的菱形顶点与原点重合,点在轴的正半轴上,点在函数的图象上,________.
2.(2022·江苏南京·二模)如图,菱形ABCD的边BC在x轴上,顶点A,D分别在函数,的图像上.若,则A的坐标为______.
3.(2022·贵州安顺·中考真题)如图,在平面直角坐标系中,菱形的顶点在轴上,,两点的坐标分别为,,直线:与反比例函数的图象交于,两点.
(1)求该反比例函数的解析式及的值;
(2)判断点是否在该反比例函数的图象上,并说明理由.
4.(2022·江苏·苏州市胥江实验中学校八年级期中)如图1,菱形顶点在轴上,顶点在反比例函数上,边交轴于点,轴,,.
5.(2022·浙江宁波·八年级期末)如图,菱形ABCD的顶点A、B分别在y轴与x轴正半轴上,C、D在第一象限,轴,反比例函数的图象经过顶点D.
(1)若,
①求反比例函数的解析式;
②证明:点C落在反比例函数的图象上;
(2)若,,求菱形ABCD的边长.
6.(2022·全国·九年级单元测试)如图,菱形OABC的点B在y轴上,点C坐标为(12,5),双曲线的图象经过点A.
(1)菱形OABC的边长为____;
(2)求双曲线的函数关系式;
(3)①点B关于点O的对称点为D点,过D作直线l垂直于y轴,点P是直线l上一个动点,点E在双曲线上,当P、E、A、B四点构成平行四边形时,求点E的坐标;
②将点P绕点A逆时针旋转90°得点Q,当点Q落在双曲线上时,求点Q的坐标.
考点五 反比例函数与正方形的综合应用
例题:(2022·江苏淮安·八年级期末)如图,A、B分别是轴正半轴上和轴正半轴上的点,以AB为边在第一象限内作正方形ABCD,反比例函数的图象经过点C.
(1)若点C坐标为(2,3),则的值为______;
(2)若A、B两点坐标分别A(2,0),B(0,2);
① 则的值为______;
② 此时点D______(填“在”、“ 不在”或者“不一定在”)该反比例函数的图象上;
(3)若C、D两点都在函数的图象上,直接写出点C的坐标为______.
【变式训练】
1.(2022·江苏·星海实验中学八年级期末)如图,是射线上一点,过作轴于点,以为边在其右侧作正方形,过的双曲线交边于点,则的值为( )
A.B.C.D.
2.(2022·黑龙江牡丹江·九年级期末)如图,正方形ABCD的边长为3,AD边在x轴负半轴上,反比例函数y=(x<0)的图像经过点B和CD边中点E,则k的值为______.
3.(2021·江苏·南通市八一中学九年级阶段练习)如图,直线y=﹣2x+4与x轴,y轴分别相交于点A、B,四边形ABCD是正方形,双曲线在第一象限经过点D,将正方形向下平移m个单位后,点C刚好落在双曲线上,则m=________________.
4.(2022·福建泉州·八年级期末)如图,正方形ABCD的顶点A在x轴的负半轴上,顶点B在y轴的正半轴上,顶点C、D都在反比例函数图象上,则点C的坐标是______.
5.(2022·江苏扬州·八年级期末)如图,已知点在正比例函数图像上,过点作轴于点B,四边形ABCD是正方形,点D在反比例函数图像上.
(1)若点的横坐标为-2,求的值;
(2)若设正方形ABCD的面积为m,试用含m的代数式表示k值.
6.(2022·江苏·射阳县实验初级中学八年级期中)如图,在平面直角坐标系中,B、C两点在x轴的正半轴上,以线段BC为边向上作正方形ABCD,顶点A在正比例函数y=2x的图象上,反比例函数y=(x>0,k>0)的图象经过点A,且与边CD相交于点E.
(1)若BC=4,求点E的坐标;
(2)连接AE,OE,若△AOE的面积为16,求k的值.
7.(2022·全国·九年级课时练习)如图1,四边形ABCD为正方形,点A在y轴上,点B在x轴上,且OA=6,OB=3,反比例函数在第一象限的图象经过正方形的顶点C.
(1)求点C的坐标和反比例函数的表达式;
(2)如图2,将正方形ABCD沿x轴向右平移m个单位长度得到正方形,点恰好落在反比例函数的图象上,求此时点的坐标;
(3)在(2)的条件下,点P为x轴上一动点,平面内是否存在点Q,使以点O、、P、Q为顶点的四边形为菱形,若存在,请直接写出点Q的坐标,若不存在,请说明理由.
相关试卷
这是一份北师大版数学九上期末重难点培优训练第六章 反比例函数培优检测卷(2份,原卷版+解析版),文件包含北师大版数学九上期末重难点培优训练第六章反比例函数培优检测卷原卷版doc、北师大版数学九上期末重难点培优训练第六章反比例函数培优检测卷解析版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
这是一份北师大版数学九上期末重难点培优训练专题17 反比例函数的应用(2份,原卷版+解析版),文件包含北师大版数学九上期末重难点培优训练专题17反比例函数的应用原卷版doc、北师大版数学九上期末重难点培优训练专题17反比例函数的应用解析版doc等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。
这是一份北师大版数学九上期末重难点培优训练专题16 反比例函数的图象和性质(2份,原卷版+解析版),文件包含北师大版数学九上期末重难点培优训练专题16反比例函数的图象和性质原卷版doc、北师大版数学九上期末重难点培优训练专题16反比例函数的图象和性质解析版doc等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。