搜索
    上传资料 赚现金
    英语朗读宝

    七年级上册数学苏科版(2024)2.3绝对值与相反数(第2课时)教案

    七年级上册数学苏科版(2024)2.3绝对值与相反数(第2课时)教案第1页
    七年级上册数学苏科版(2024)2.3绝对值与相反数(第2课时)教案第2页
    七年级上册数学苏科版(2024)2.3绝对值与相反数(第2课时)教案第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    苏科版(2024)七年级上册(2024)2.3 绝对值与相反数第2课时教案及反思

    展开

    这是一份苏科版(2024)七年级上册(2024)2.3 绝对值与相反数第2课时教案及反思,共6页。教案主要包含了教学目标,学习目标,教学重点,教学难点,教学过程,课后作业,教学反思等内容,欢迎下载使用。
    第2课时 相反数

    一、教学目标
    1.借助数轴理解相反数的意义,掌握求一个有理数的相反数的方法;
    2.通过观察、对比等方法培养学生的观察、归纳与概括的能力;
    3.引导学生在数轴上画出表示互为相反数的点,让学生在探索相反数的特征的过程中,进一步感受数形结合思想.

    二、学习目标
    1.借助数轴理解相反数的意义,了解一对相反数在数轴上的位置关系;
    2.会求给定有理数的相反数;
    3.通过从数与形两方面了解相反数,初步体会数形结合的思想方法.

    三、教学重点
    会求给定有理数的相反数,掌握多重符号的化简.

    四、教学难点
    借助数轴理解相反数的意义,帮助学生从数与形两个方面理解相反数,理解-a所表示的意义.

    五、教学过程
    一、情境引入
    展示成语故事《南辕北辙》.
    如果我们用点O表示魏国的位置,点A表示楚国的位置,假设楚国与魏国的距离为30km,以魏国为坐标原点,规定向南为正方向,而某人从魏国出发向北到了点B也走了30 km,请同学们把这3个点在数轴上表示出来.
    1.观察数轴上点的位置及它们到原点的距离,你有什么发现?
    2.观察这组数,有什么特点?
    答:在原点两侧,到原点距离相等;
    符号不同,数字部分相同(绝对值相等).
    师生活动:同桌交流,学生举手回答.
    设计意图:通过阅读成语故事感受生活中“相反意义”的量,设置问题情境利用已学知识将生活语言转化为数学语言,并引发学生的思考,为学习新课做铺垫.
    二、新知探索
    活动1:继续观察下列各组数,你有什么发现?
    5与-5,2.5与-2.5,23与−23
    答:它们符号不同,数字相同.
    概念归纳:像5与-5,-2.5与2.5,23与−23,…这样只有符号不同的两个数称为相反数(ppsite number).例如:5与-5互为相反数,也可以说5是-5的相反数,-5是5的相反数.
    0的相反数是0.
    师生活动:学生举手回答.
    设计意图:通过延续性问题情境,进一步感受这类数的特征,通过寻找共性,引出相反数的概念,易于学生理解.
    三、应用举例
    例3:写出3、-4.5、47、0的相反数,并在数轴上画出这些数及其相反数对应的点.
    观察数轴上互为相反数的点,它们与原点的距离有什么特点?
    答:3的相反数分别是-3,-4.5的相反数分别是4.5,47的相反数分别是−47;
    到原点距离相等.
    总结归纳:互为相反数的两个数只相差一个负号,所以这两个数在数轴上的对应点到原点的距离相等.由此,我们得到:互为相反数的两个数的绝对值相等.也可以表示为:.
    师生活动:学生独立完成,投屏展示成果,并由学生讲解.
    设计意图:通过对相反数的理解,帮助学生写出相反数,通过在数轴上描点,感受数与形的关联,体会数形结合的数学思想,学会在数与形两个角度描述相反数.
    思考:a的相反数是-a ,-a一定是负数吗?为什么?
    结论:不一定,要注意这个-a它可以是负数,也可以是正数或0.
    师生活动:学生举手回答,教师总结.
    设计意图:通过反问帮助学生完成从特殊、具体的相反数到一般、抽象的相反数的认识,进一步扩大字母表示数的范围,为后续代数式学习做铺垫.
    变式:
    1.写出下列各数的相反数:0,67,-5,-3.14,32.
    答:各数的相反数依次为:0,-67,5,3.14,-32.
    2.用数轴上的点表示下列各数以及它们的相反数:4,-0.5,2,-3.
    师生活动:学生独立完成,同桌校对,投屏展示成果,并集体校对.
    设计意图:让学生进一步巩固所学知识,并通过师生互动,最大程度确保学生绘图的正确性,并针对问题进行解决.
    例 4.:化简:(1)-(+2.7); (2)-(-3)
    答:-(+2.7)表示+2.7 的相反数,因为+2.7的相反数是-2.7,所以-(+2.7)=-2.7;
    -(-3)表示-3的相反数,因为-3的相反数是3,所以-(-3)=3.
    师生活动:学生先独立思考再作答,教师板书.
    设计意图:该题型是这节课的易错点,教师要帮助学生从相反数的定义入手理解多重符号的化简原理,并且要注意语言的准确与规范,要舍得花时间让学生理解及表述,使学生真正理解化简原理,而不是死记规律.
    变式:
    1.化简:-(+3.5), -(-3.5),
    +(-3.5), +(+3.5)
    答:-(+3.5)=-3.5,-(-3.5)=3.5,
    +(-3.5)=-3.5,+(+3.5)=3.5.
    2.化简:+[-(+3.5)]=__________, -[+(-3.5)]= __________,
    -[-(-3.5)]= __________, -[-(+3.5)]= __________ .
    答:+[-(+3.5)]=-3.5, -[+(-3.5)]=3.5,
    -[-(-3.5)]=-3.5, -[-(+3.5)]=3.5.
    思考:观察化简前的数字,你有什么发现?结合化简结果,你发现了什么?
    总结归纳:化简含有多个符号的数时,只要观察“-”号的个数.如果有奇数个“-”号,结果的符号就是“-”号;如果有偶数个“-”号,结果的符号就是“+”号
    师生活动:学生先独立作答,再随机选择学生回答;学生独立思考,举手作答,教师总结.
    设计意图:让学生进一步巩固所学知识,加深掌握利用相反数进行化简的方法,并进一步探索符号规律,感受数学简洁之美.
    变式:化简下列各式:
    ①-(-2)= ; ②+ -15= ;
    ③-[-(+5.5)]= ;④-[-(-2024)]= ⁠;
    ⑤当+5前面有2024个负号时,化简后结果是 .
    答:2,−15,5.5,-2024,5.
    师生活动:学生独立作答,集体校对.
    设计意图:让学生进一步巩固所学知识,尝试使用规律进行化简.
    四、课堂练习
    1.下列各组数中互为相反数的是( )
    A.-2与-12 B.|-2|与2
    C.-2.5与|-2| D.-12与−12
    2.如图,表示互为相反数的两个点是( )
    A.A和C B.B和C
    C.A和D D.B和D
    3.下列各式中,化简正确的是( )
    A.-(+5)=-5 B.-(-5)=-5
    C.+(-5)=5 D.-[+(-5)]=-5
    4.下列说法中正确的是( )
    A.+a一定是在原点的右面 B.-a一定是负数
    C.-|a|一定是负数 D.-|a|是非正数
    5.【阅读】|5-2|表示5与2的差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看作|5-(-2)|,表示5与-2的差的绝对值,也可理解为5与-2两数在数轴上所对应的两点之间的距离
    (1)|4-(-3)|= ,理解为 ,
    (2)|x+1|=4,则x= ⁠.
    (3)若点P表示的整数为x,当x= ,|x+4|与|x-2|的值相等.
    答案: 1.D;
    2.C;
    3.A;
    4.D;
    5.7,4与-3在数轴上所对应的两点之间的距离,3或-5,-1.
    设计意图:通过课堂练习巩固新知,加深对本节课的理解及应用.
    五、课堂小结
    师生活动:教师和学生一起回顾本节课所讲的内容.
    1.本节课你学到了什么?
    2.相反数的定义是什么?
    3.如何求相反数?
    4.如何对多重符号的数化简?
    六、课后作业
    1.完成课本上的相关练习题.
    2.完成同步练习相关练习.

    六、板书设计

    七、教学反思
    1.要关注学生对抽象概念的理解,适时引导他们从具体实例中抽象出数学概念.
    2.要确保每个学生都能积极参与到课堂活动中,通过练习和讨论加深对知识的理解.如果发现学生对绝对值和相反数的概念理解有困难,可以尝试用更直观的方式,如数轴图示,帮助他们理解.
    3.可以通过活动从“形”和“数”的角度引导学生关注两数所对应的点到原点的距离及两数的符号,并通过举例帮助学生理解相反数表达了两个数之间的关系,认识“-”号可表示“相反数”的意思.
    4.掌握例4的教学要求:理解相反数的意义,不要过度追求多重符号的化简.
    5.注意渗透符号意识,并为后续给出有理数减法法则的符号表示埋下伏笔.
    6.课堂小结重点围绕“相反数的几何意义”和“互为相反数的数的符号表示”展开讨论和总结.

    相关教案

    苏科版(2024)七年级上册(2024)2.3 绝对值与相反数第3课时教学设计:

    这是一份苏科版(2024)七年级上册(2024)2.3 绝对值与相反数第3课时教学设计,共6页。教案主要包含了教学目标,学习目标,教学重点,教学难点,教学过程,课后作业等内容,欢迎下载使用。

    苏科版(2024)七年级上册(2024)2.3 绝对值与相反数第1课时教学设计及反思:

    这是一份苏科版(2024)七年级上册(2024)2.3 绝对值与相反数第1课时教学设计及反思,共5页。教案主要包含了教学目标,学习目标,教学重点,教学难点,教学过程,课后作业等内容,欢迎下载使用。

    数学七年级上册2.4 绝对值与相反数教学设计及反思:

    这是一份数学七年级上册2.4 绝对值与相反数教学设计及反思,共4页。教案主要包含了教学目标,教学方法和手段,教学重难点,教学过程,板书设计,课后练习,教学反思等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map