河北省保定市定州市2024-2025学年高二上学期11月期中考试数学试题(Word版附解析)
展开
这是一份河北省保定市定州市2024-2025学年高二上学期11月期中考试数学试题(Word版附解析),文件包含河北省保定市定州市2024-2025学年高二上学期11月期中数学试题Word版含解析docx、河北省保定市定州市2024-2025学年高二上学期11月期中数学试题Word版无答案docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅管把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、单项选择题(共8题,每题5分)
1. 直线的倾斜角是( )
A. B. C. D.
【答案】D
【解析】
【分析】根据斜率与倾斜角的关系求解即可.
【详解】由题的斜率,故倾斜角的正切值为-1,又,故
故选:D
【点睛】本题主要考查了直线斜率为直线倾斜角的正切值,属于基础题型.
2. 已知方程表示焦点在轴上的椭圆,则的取值范围是( )
A. B. C. D.
【答案】C
【解析】
【分析】利用椭圆焦点在轴上的标准方程的结构特征,得到关于的不等式组,解之即可得解.
【详解】因为方程表示焦点在轴上的椭圆,
所以,解得.
故选:C.
3. 在四面体中,记,,,若点M、N分别为棱OA、BC的中点,则( )
A. B.
C. D.
【答案】B
【解析】
【分析】根据空间向量的线性运算,即可求得答案.
【详解】由题意得:,
故选:B.
4. 若直线与以,为端点的线段有公共点(含端点),则的取值范围为( )
A. B.
C. D.
【答案】C
【解析】
【分析】求出过定点,画出图形,求出,,数形结合得到或,即或.
【详解】经过定点,斜率为,画出图形,如下:
其中,,
直线与以,为端点的线段有公共点(含端点),
则或,即或.
故选:C
5. 已知直线的一个方向向量是,平面的一个法向量是,则与的位置关系是( )
A. B.
C. 与相交但不垂直D. 或
【答案】D
【解析】
【分析】利用直线的方向向量与平面的法向量的数量积结果即可判断得解.
【详解】因为,,
所以,则,
又是直线的一个方向向量,是平面的一个法向量,
所以或.
故选:D.
6. 若直线与圆相切,且点到直线的距离为3,则这样的直线的条数为( )
A. 4B. 3C. 2D. 1
【答案】A
【解析】
【分析】根据题意,分类讨论直线的斜率不存在与存在两种情况,利用直线与圆相切的性质与点线距离公式得到关于的方程组,进而分析得其解的个数即可得解.
【详解】圆可化为,圆心为,半径为1,
因为直线与圆相切,
当直线的斜率不存在时,则直线的方程为或,
当直线的方程为时,点到直线的距离为,不满足题意;
当直线的方程为时,点到直线的距离为,不满足题意;
当直线的斜率存在时,设直线的方程为,即,
则有,即,
即,解得或,
当时,有,解得或;
当时,有,整理得,
此时,即方程有两个解,且不为或;
综上,的取值有四种情况,对应的也有四种取值,所以满足条件的直线一共有四条.
故选:A.
7. 已知圆过点,,设圆心,则的最小值为( )
A. B. 2C. D. 4
【答案】B
【解析】
【分析】根据题意由半径相等,结合两点距离公式得到,再利用基本不等式即可得解.
【详解】根据题意,得,又,,,
所以,化简得,
故,则,
当且仅当时,等号成立,
所以的最小值为2.
故选:B.
8. 已知椭圆的左、右焦点分别,,是椭圆上一点,直线与轴负半轴交于点,若,且,则椭圆的离心率为( )
A. B. C. D.
【答案】C
【解析】
【分析】根据题意设,从而得到所需线段关于的表示,再利用勾股定理与余弦定理依次求得关于的表示,进而得解.
【详解】因为,不妨设,则,
由椭圆的定义与对称性可得,,,
因为,所以,
则,解得,
则,故,
则在中,由,
得,解得,
所以椭圆的离心率为.
故选:C.
二、多项选择题(共3题,每题6分)
9. 已知,分别是椭圆的左、右焦点,为椭圆上异于长轴端点的动点,则下列结论正确的是( )
A. 椭圆的焦距为6B. 的周长为10
C. 椭圆的离心率为D. 面积的最大值为
【答案】BD
【解析】
【分析】利用椭圆方程得到,利用椭圆的定义与性质,逐一分析判断各选项即可得解.
【详解】对于A,因为椭圆,所以,
所以椭圆的焦距为,故A错误;
对于B,由椭圆的定义可知,
所以的周长为,故B正确;
对于C,椭圆的离心率为,故C错误;
对于D,当点为椭圆的短轴的一个端点时,点到轴的距离最大,
此时面积取得最大值,为,故D正确.
故选:BD.
10. 在三棱锥中,△为边长为的正三角形,,,设二面角的大小为,,为的重心,则下列说法正确的是( )
A. 若,则B. 若,则
C. 若,则与所成的角为D. 若,则
【答案】ABD
【解析】
【分析】取中点,过作且,连接,则平面.取,,为基底向量,则根据题意知,.对于项,根据,得,用基底向量表示,再求模长即可;对于项,根据模长公式建立等式,可得,再用向量的数量积公式求夹角即可;对于项,若,则,分别用基底向量表示,,并求模长,再利用向量法求异面直线的夹角即可;对于项,若,则,根据已知条件可证平面,从而平面,建立空间直角坐标系,写出点的坐标,利用三角形重心公式求得的坐标,再求模长即可.
【详解】如图,取中点,过作且,连接,则平面.
因为△为正三角形,所以,,
因为,所以,所以,
所以二面角的平面角为,则.
以,,为基底向量,则,.
对于项,若,即,所以.
因为,
所以,故正确;
对于项,由知,
所以,所以,
所以,解得,所以,故正确;
对于项,若,即,所以.
由知,又,
所以,
,,
设与所成角为,则,
所以与所成的角不是,故错误;
对于项,若,即,所以,
又,,平面,所以平面,
又,所以平面,则三线两两垂直,建立如图坐标系.
则,,,,则根据三角形重心坐标公式得,
所以,所以,故正确.
故选:.
11. 已知曲线,则下列说法正确的是( )
A.
B. 曲线关于直线对称
C. 曲线围成的封闭图形的面积不大于
D. 曲线围成的封闭图形的面积随的增大而增大
【答案】ABD
【解析】
【分析】利用曲线的方程得到关于的不等式可判断A;利用点关于直线的对称点判断得曲线的对称性,从而判断B;分析曲线与曲线上的两个横坐标相同的点的纵坐标大小关系,从而得到曲线围成的封闭图形的面积情况,从而判断CD.
【详解】对于A,因为曲线,
所以,解得,故A正确;
对于B,因为曲线,可化为,
设点是曲线上任一点,则其关于对称的点为,
将代入曲线方程,得,
所以曲线关于直线对称,故B正确;
对于CD,因为,所以,则,
设点是曲线上任一点,则,
点是曲线上的一点,则,
则,,故,
易知当时,在其定义域内单调递减,
所以(当且仅当或时,等号成立),故,
又在上单调递增,所以,
故当增大时,横坐标相同的点的纵坐标的绝对值会大于或等于原来的,
又曲线围成的图形为封闭图形,所以该图形会比原来的大,
即曲线围成的封闭图形的面积随的增大而增大,故D正确,
又当时,曲线为,即其图形是半径为的圆,
此时其面积为,则曲线围成的封闭图形的面积不小于,故C错误.
故选:ABD.
【点睛】关键点点睛:本题CD选项解决的关键在于,分析得两曲线与上的点的情况,从而得到其围成的封闭图形的面积情况,由此得解.
三、填空题(共3题,每题5分)
12. 若圆上存在两点关于直线对称,则的值为________.
【答案】2
【解析】
【分析】由题意可得圆心在直线上,从而列式得解.
【详解】圆的圆心为圆心,半径为2,
圆上存在两点关于直线对称,则圆心在直线上,
所以,解得.
故答案为:2.
13. 已知点,,C1,1,0,则点到直线的距离是______.
【答案】##
【解析】
【分析】利用空间向量中点到线的距离公式,结合向量数量积与模的坐标表示即可得解.
【详解】因为点,,C1,1,0,
所以,,
则,,
所以点到直线的距离是
.
故答案为:.
14. 过椭圆上一点作圆的两条切线,切点为,,当最大时,点的纵坐标为________.
【答案】##
【解析】
【分析】根据给定条件,利用圆的切线长定理、结合四边形及三角形面积转化为求最大值问题.
【详解】圆的圆心,半径,
由切圆于点知,,则,
因此最大,当且仅当最大,设,,
则,
当且仅当时取等号,所以点的纵坐标为.
故答案为:
四、解答题(共5题,共77分)
15. 已知直线,圆.
(1)求与直线平行且与圆相切直线方程;
(2)设直线,且与圆相交于,两点,若,求直线的方程.
【答案】(1)或;
(2)或
【解析】
【分析】(1)根据题意假设所求直线方程,利用圆心到直线的距离等于半径求得,从而得解;
(2)根据题意假设直线的方程,利用圆的弦长公式求得圆心到直线的距离,进而利用点线距离公式列式即可得解.
【小问1详解】
依题意,设所求直线方程为,
因为所求直线与圆相切,且圆心为,半径为,
,解得或,
所求直线方程为或;
【小问2详解】
依题意,设直线的方程为,
因为直线与圆相交于A,B两点,,
圆心到直线的距离为,
,解得或,
直线的方程为或.
16. 设椭圆,,分别是椭圆的左、右焦点,是上一点,且与轴垂直,直线与的另一个交点为.
(1)若直线的倾斜角为,求椭圆的离心率;
(2)若直线在轴上的截距为1,且,求,.
【答案】(1)
(2),
【解析】
【分析】(1)根据条件求出的坐标,利用直线的的倾斜角,建立关于的齐次方程,解之即可得解;
(2)根据题意,结合线段的数量关系求得的坐标,代入椭圆方程,解之即可得解.
【小问1详解】
依题意,设椭圆的半焦距为,
则,则由题意可知,点在第二象限,设,
将代入,得,解得,则,
因为直线的倾斜角为,
所以,则,则,
所以,即,则,
即,解得或(舍去),
所以椭圆的离心率为.
【小问2详解】
记直线与轴的交点为,
易知,且,故,
则,,
因为,所以,则,
即是与的中点,所以,
将代入椭圆方程,得,
所以,解得,故,即,
所以,.
17. 如图,在正方体中,,分别为,的中点,点在棱上,且.
(1)证明:,,,四点共面.
(2)设平面与棱的交点为,求与平面所成角的正弦值.
【答案】(1)证明见解析;
(2).
【解析】
【分析】(1)建立空间直角坐标系,利用共面向量定理,结合向量的坐标运算计算推理得证.
(2)结合(1)的信息,求出点的坐标及平面法向量,利用线面角的向量求法求解.
【小问1详解】
在正方体中,以点为原点,建立如图所示的空间直角坐标系,
令,则,
则,
于是,即向量共面,
又向量有公共点,所以,,,四点共面.
【小问2详解】
设,则,由点平面,
得,即,则,
解得,即,,
而,则,
设平面的法向量,则,令,得,
令与平面所成的角为,则,
所以与平面所成角的正弦值为.
18. 球面距离在地理学、导航系统、信息技术等多个领域有着广泛应用.球面距离的定义:球面上两点之间的最短连线的长度,即经过这两点的大圆(经过球心的平面截球面所得的圆)在这两点间的一段劣弧的长度.这个弧长就被称作两点的球面距离.
(1)在正四棱柱(底面为正方形的直棱柱)中,,,求顶点,在该正四棱柱外接球上的球面距离.
(2)如图1,在直角梯形中,,,,.现将沿边折起到,如图2,使得点在底面的射影在上.
①求点到底面的距离;
②设棱锥的外接球为球,求,两点在球上的球面距离.
参考数据:,.
【答案】(1);
(2)①;②.
【解析】
【分析】(1)求出线段所对的正四棱柱外接球截面大圆的圆心角,再求出弧长.
(2)①根据给定条件可得平面,再在直角三角形中求出;②利用球的截面性质确定球心,求出球半径,进而求出球面距离.
【小问1详解】
正四棱柱的外接球直径,球半径,
因此球心与点构成正三角形,弦所对球过的大圆圆心角为,弧长为,
所以顶点,在该正四棱柱外接球上的球面距离为.
【小问2详解】
①在直角梯形中,,,,,
,,则为正三角形,
棱锥中,平面,而平面,则,
又,平面,则平面,
而平面,因此,,
在中,,,,
所以点到底面的距离为.
②取中点,则为外接圆圆心,令正的外接圆圆心为,
连接,则,平面,平面,
于是,,
在中,,因此棱锥的外接球半径,
有,球的弦所对大圆的圆心角为,
,即是钝角,而,
则,在大圆中所对劣弧长为,
所以,两点在球上的球面距离为.
19. 在平面直角坐标系中,为坐标原点,,,,,点在线段上,点在线段上,且,设直线与交于点.
(1)证明:当变化时,点始终在某个椭圆上运动,并求出椭圆的方程.
(2)过点作直线与椭圆交于,不同的两点,再过点F1,0作直线的平行线与椭圆交于,不同的两点.
①证明:为定值.
②求面积的取值范围.
【答案】(1)
(2)①证明见解析;②
【解析】
【分析】(1)求出直线与的方程,消去参数即可得到椭圆的方程;
(2)①分别联立方程与,借助韦达定理,表示出与,进一步求解即可;
②将转化为,再借助韦达定理,可转化为的函数,根据的范围求函数值域即可.
小问1详解】
解:设点,依题意可知,即,
所以,即;
同理可得.
于是直线的斜率为,
所以的直线方程为,
直线的方程为,即,
设直线与的交点坐标为,
由可得,
整理可得,
所以当变化时,点始终在椭圆:上运动.
【小问2详解】
①证明:设直线的方程为,
联立,消去得,,
因直线与椭圆交于两点,,
所以,即或,
由韦达定理可知,,
又,所以,
设直线的方程为,直线与椭圆交于两点,,
联立,消去得,,
同理可得:,
,
所以(定值).
又当直线的方程为时,直线与直线重合不符合题意.
故(定值).
②因为,
又因为,
所以,
整理可得,
令,因为,所以,
所以,
又因为当时,,所以,
所以,
即面积的取值范围为.
【点睛】关键点睛:(1)在得到直线与的方程后整体消参是比较简捷的方法;
(2)将直线的方程设为,直线的方程设为,在后续运算中
能比较简捷运算量稍小,给转化为提供了便利条件.
相关试卷
这是一份河北省保定市部分高中2024-2025学年高一上学期11月期中考试数学试题(Word版附解析),文件包含河北省保定市部分高中2024-2025学年高一1+3上学期11月期中考试数学试题Word版含解析docx、河北省保定市部分高中2024-2025学年高一1+3上学期11月期中考试数学试题Word版无答案docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份河北省张家口市2024-2025学年高二上学期期中考试数学试题(Word版附解析),文件包含河北省张家口市2024-2025学年高二上学期11月期中考试数学试题Word版含解析docx、河北省张家口市2024-2025学年高二上学期11月期中考试数学试题Word版无答案docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
这是一份河北省保定市部分高中2024-2025学年高二上学期开学考试数学试题(Word版附解析),共10页。试卷主要包含了本试卷主要考试内容,在中,角的对边分别为,若,则,已知事件两两互斥,若,则等内容,欢迎下载使用。