湖北省恩施州2023-2024学年七年级上学期期末模拟03数学试卷(解析版)
展开
这是一份湖北省恩施州2023-2024学年七年级上学期期末模拟03数学试卷(解析版),共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
一、单选题
1. |﹣3|的相反数为( )
A. ﹣3B. 0C. 3D. ±3
【答案】A
【解析】∵,
∴|﹣3|的相反数为﹣3;
故选A.
2. 据报道:苏南硕放国际机场新机坪于10月底投入投用,机场年旅客保障能力将提高至1200万人次,1200万用科学记数法表示为( )
A. 12×107B. 1.2×107C. 1.2×108D. 0.12×108
【答案】B
【解析】1200万用科学记数法表示:1.2×107,
故选B.
3. 大于-4.2且小于3.8的整数有( )
A. 5个B. 6个C. 7个D. 8个
【答案】D
【解析】如图所示,
,
由图可知,大于-4.2且小于3.8的整数有-4,-3,-2,-1,0,1,2,3共8个.
故选:D.
4. 如果甲数,乙数,丙数,丁数,那么得数最大的是( )
A. 甲数B. 乙数C. 丙数D. 丁数
【答案】D
【解析】甲数,乙数,丙数,丁数,
,
得数最大的是丁数,
故选D.
5. 若﹣3<a,则a的值可以是( )
A. ﹣5B. ﹣4C. ﹣3D. 0
【答案】D
【解析】∵﹣3<a,
∴ ,
∴a的值可以是0,
故选:D.
6. 图中可以只用一个字母表示的角的个数是( )
A. 1个B. 2个C. 3个D. 4个
【答案】B
【解析】可以只用一个大写字母表示的角有∠B、∠C共2个,
故选:B.
7. 如图,下列平面图形能折成一个棱柱的是( )
A. ①②B. ②③C. ②④D. ②③④
【答案】D
【解析】图中,①的侧面为3个,底面的边数为4,不一致,故①不可行;
②③④侧面为4个同样的长方形,底面为正方形,可折成棱柱,故②③④可行;
故选:D.
8. 若一个三角形的三个内角的比为,则此三角形的最大内角度数是( )
A. B. C. D.
【答案】B
【解析】三角形的三个内角和为,
设三个内角大小分别为:、、,
,
解得,
,
此三角形的最大内角度数是.
故选:B.
9. 某校课外活动课中,手工制作班的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,设需要张做盒身,要使盒身和盒底刚好配套,则下列所列方程正确的是( )
A. B.
C. D.
【答案】D
【解析】设需要张做盒身,则张制盒底
由题意可得,,
故选:D.
10. 的余角为,则的度数为( )
A. B. C. D.
【答案】D
【解析】的余角为,
则的度数为
故选D.
11. 若,则下列结论正确的是( )
A. B. C. D.
【答案】B
【解析】A:等式两边同时加上(或减去)2,等式方可成立,故选项错误;
B:等式两边同时乘以,等式依然成立,故选项正确;
C:等式两边同时乘以2或3然后再加上5,等式方可成立,故选项错误;
D:若,等式无意义,故选项错误;
故选:B.
12. 如图所示,,,则下列结论正确的有( )
①平分;②平分;③平分;④平分;⑤平分.
A. 4个B. 3个C. 2个D. 1个
【答案】C
【解析】∵
∴不平分,故①错误;
∵
∴不平分,故②错误;
,
平分,故③正确;
∵
∴不平分,故④错误;
又,
,即,
平分,故⑤正确.
故选:.
二、填空题
13. 已知(a+3)2+|b﹣2|=0,则ab=__.
【答案】-6
【解析】由题意得,a+3=0,b﹣2=0,
解得,a=﹣3,b=2,
则ab=(-3)2=6 ,
故答案为:6.
14. 如图,矩形ABCD的面积为____(用含x的代数式表示).
【答案】x2+5x+6
【解析】S=(x+3)(x+2)=+5x+6.
故答案为+5x+6
15. 已知整式(a2+a+2b)﹣(a2+3a+nb)的值与b的取值无关,则n的值为 _____.
【答案】2
【解析】∵(a2+a+2b)-(a2+3a+nb),
=a2+a+2b-a2-3a-nb,
=-2a+(2-n)b,
∴2-n=0,
解得n=2.
故答案为2.
16. 按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第1000个数是__________.
【答案】
【解析】按一定规律排列的一列数依次为:,,,,,,,
观察得到:分母为连续的奇数,后一个分子比前一个分子多3,
按此规律,第n个数可表示为:,
当时,,
故答案为:.
三、解答题
17. 简便计算:
(1)
(2)
解:(1)
;
(2)
.
18. 解方程
(1);
(2).
解:(1)
移项得:,
合并得:,
化系数为1得:;
(2)
去分母得:,
整理得:,
移项得:,
合并得:,
化系数为1得:.
19. 化简并求值+4xy,其中x=,y=-1.
解:原式=4xy+(x2+5xy-y2-x2-3xy+2y2)
=(x2-x2)+(4xy+5xy-3xy)+(-y2+2y2)
=6xy+y2
当x=,y=-1时,原式=6××(-1)+(-1)2=-1.
20. 在数轴上画出表示下列各数的点,并用“>”连接下列各数.
,,,,.
解:,,,
在数轴上表示如图,
∴.
21. 小王在新藏公路某路段设置了一个加水站,他每天开着加水车沿东西方向给过路的汽车加水.如果约定向西为正.向东为负,加水车当天的行驶记录如下(单位:千米):
+8,-9,+7,-4,-3,+5,-6,-8,+6,+7.
(1)加水车最后到达的地方在出发点的哪个方向?距出发点多远?
(2)若加水车行驶过程中每千米耗油量为升,求这天加水车共耗油多少升?
【答案】(1)加水车最后到达的地方在出发点的西方,距出发点3千米;(2)这天共耗油63a解 :(1)根据题意可得:向西为正,向东为负,
则加水车最后到达的地方等于
(+8)+(-9)+(+7)+(-4)+(-3)+(+5)+(-6)+(-8)+(+6)+(+7)
=+3,
故加水车最后到达的地方在出发点的西方,距出发点3千米;
(2)这次加水车共走了|+8|+|-9|+|+7|+|-4|+|-3|+|+5|+|-6|+|-8|+|+6|+|+7|=63千米,
则这天加水车共耗油63a升,
答:这天共耗油63a升.
22. 王大伯的农场里种植四种蔬菜,其中玉米面积占35%,油菜面积占,黄瓜与西红柿的种植面积比为2:3,其中油菜的种植面积是800平方米.
(1)求王大伯农场的种植面积有多少平方米?
(2)西红柿的种植面积比黄瓜的种植面积多百分之几?
(3)预计每平方米玉米产量是0.8千克,玉米的市场收购价为2元/千克,扣除搬运、损耗等5%的费用,王大伯今年玉米预计收入为多少元?
解:(1)油菜的种植面积是平方米,油菜的面积占
种植的总面积平方米
(2)种植总面积为平方米,玉米种植面积占
玉米的种植面积平方米
黄瓜和西红柿种植的总面积平方米
黄瓜与西红柿种植的面积比为
黄瓜的种植面积为平方米,西红柿的种植面积为平方米
黄瓜的种植面积占比为,西红柿的种植面积占比为
西红柿的种植面积比黄瓜种植面积多
(3)玉米的种植面积平方米
每平方米玉米产量是千克,玉米的市场收购价为元/千克,搬运和损耗费占
王大伯今年玉米的预计收入为:元
23. 已知,是内的射线.
(1)如图1,若平分平分,,则 ;
(2)如图2,若平分平分,求的度数;
(3)如图3,是内的射线,若平分平分,当射线在内时,求的度数.
解:(1)∵,
∴,
∵平分,
∴,
故答案为:60;
(2)∵平分平分,
∴,
∵,
∴;
(3)设,则,
∵平分平分,
∴,
∴
24. 如图,数轴上、、三点对应的数分别是、、14,满足,且为最大的负整数,.动点从点出发,沿数轴以每秒1个单位长度匀速向右运动,动点从点出发,沿数轴匀速向左运动,且两点同时出发.
(1)求、表示的数是多少?
(2)当点运动到的位置时,点恰好运动到点的位置,求点的运动速度?
(3)点以(2)中的速度运动,设运动时间为秒,当、两点相距6个单位长度时,求的值,并直接写出对应情况下、对应的数是多少?
解:(1)∵为最大的负整数,
∴.
∵,
∴.
∵,
∴,
∴;
(2)∵运动的距离为,运动的时间为秒,
又∵与同时出发,
∴运动的时间为2秒,点运动的距离为,
∴点的速度为.
答:点的速度为每秒3个单位长度;
(3)、两点之间的距离为,
设、两点之间的距离为,则、两点之间的距离为,
∵、之间相距6个单位长度.
∴①点P在点左侧时,,
解得:,
∴为,为5;,
②点P在点右侧时,,
解得:,
∴为2,为.
相关试卷
这是一份湖北省恩施州2023-2024学年七年级上学期期末模拟01数学试卷(解析版),共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省恩施州2023-2024学年七年级上学期期末模拟02数学试卷(解析版),共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省恩施州中考数学试卷(含解析版),共22页。