江苏省宿迁市2024年中考数学模拟汇编试题(含解析)
展开
这是一份江苏省宿迁市2024年中考数学模拟汇编试题(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1.2的倒数是( )。
A. 2 B. C. D. -2
2.下列运算正确的是( )。
A. B. C. D.
3.如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是( )。
A. 24° B. 59° C. 60° D. 69°
4.函数 中,自变量x的取值范围是( )。
A. x≠0 B. x<1 C. x>1 D. x≠1
5.若a<b,则下列结论不一定成立的是( )。
A. a-1<b-1 B. 2a<2b C. D.
6.若实数m、n满足 ,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是 ( )。
A. 12 B. 10 C. 8 D. 6
7.如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是( )。
A. B. 2 C. D. 4
8.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是( )。
A.5
B.4
C.3
D.2
二、填空题
9.一组数据:2,5,3,1,6,则这组数据的中位数是________.
10.地球上海洋总面积约为360 000 000km2 , 将360 000 000用科学计数法表示是________.
11.分解因式:x2y-y=________.
12.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是________.
13.已知圆锥的底面圆半价为3cm,高为4cm,则圆锥的侧面积是________cm2.
14.在平面直角坐标系中,将点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是________.
15.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.
16.小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜。若由小明先取,且小明获胜是必然事件,,则小明第一次取走火柴棒的根数是________.
17.如图,在平面直角坐标系中,反比例函数 (x>0)与正比例函数y=kx、 (k>1)的图像分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.
18.如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点AB分别落在x、y轴的正半轴上,∠OAB=60°,点A的坐标为(1,0),将三角板ABC沿x轴右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B第一次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是________.
三、解答题
19. 解方程组:
20.计算:
21.某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表。
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中c的值是________;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数。
22.如图,在□ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.
23.有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看
(1)求甲选择A部电影的概率;
(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)
24.某种型号汽车油箱容量为40L,每行驶100km耗油10L。设一辆加满油的该型号汽车行驶路程为x(km),行驶过程中油箱内剩余油量为y(L)。
(1)求y与x之间的函数表达式;
(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的四分之一,按此建议,求该辆汽车最多行驶的路程.
25.如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450 , 然后他沿着正对树PQ的方向前进100m到达B点处,此时测得树顶P和树底Q的仰角分别是600和300 , 设PQ垂直于AB,且垂足为C.
(1)求∠BPQ的度数;
(2)求树PQ的高度(结果精确到0.1m, )
26.如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D,过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.
(1)求证:PC是⊙O的切线;
(2)若∠ABC=600,AB=10,求线段CF的长,
27.如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)的图像与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.
(1)求点A、B、D的坐标;
(2)若△AOD与△BPC相似,求a的值;
(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.
28.如图,在边长为1的正方形ABCD中,动点E、F分别在边AB、CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x,
(1)当AM= 时,求x的值;
(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;
(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.
答案解析部分
一、选择题
1.【答案】B
【考点】有理数的倒数
【解析】【解答】解:∵2的倒数为 ,故答案为:B.
【分析】倒数定义:乘积为1的两个数互为倒数,由此即可得出答案.
2.【答案】C
【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,合并同类项法则及应用
【解析】【解答】解:A.∵a .a =a ,故错误,A不符合题意;
B.a2与a1不是同类项,不能合并,故错误,B不符合题意;
C.∵(a2)3=a6,故正确,C符合题意;
D.∵a8÷a4=a4,故错误,D不符合题意;
故答案为:C.
【分析】A.根据同底数幂相乘,底数不变,指数相加即可判断对错;
B.根据同类项定义:所含字母相同,并且相同字母指数相同,由此得不是同类项;
C.根据幂的乘方,底数不变,指数相乘即可判断对错;
D.根据同底数幂相除,底数不变,指数相减即可判断对错;
3.【答案】B
【考点】平行线的性质,三角形的外角性质
【解析】【解答】解:∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=35°+24°=59°,
又∵DE∥BC,
∴∠D=∠DBC=59°.
故答案为:B.
【分析】根据三角形外角性质得∠DBC=∠A+∠C,再由平行线性质得∠D=∠DBC.
4.【答案】D
【考点】分式有意义的条件
【解析】【解答】解:依题可得:x-1≠0,
∴x≠1.
故答案为:D.
【分析】根据分式有意义的条件:分母不为0,计算即可得出答案.
5.【答案】D
【考点】不等式及其性质
【解析】【解答】解:A.∵a<b,∴ a-1<b-1,故正确,A不符合题意;B.∵a<b,∴ 2a<2b,故正确,B不符合题意;
C.∵a<b,∴ < ,故正确,C不符合题意;
D.当a<b<0时,a2>b2 , 故错误,D符合题意;
故答案为:D.
【分析】A.不等式性质1:不等式两边同时加上(或减去)同一个数,不等式任然成立;由此即可判断对错;
B.不等式性质2:不等式两边同时乘以(或除以)同一个正数,不等式任然成立;由此即可判断对错;
C.不等式性质2:不等式两边同时乘以(或除以)同一个正数,不等式任然成立;由此即可判断对错;
D.题中只有a<b,当当a<b<0时,a2>b2 , 故错误
6.【答案】B
【考点】等腰三角形的性质,非负数之和为0
【解析】【解答】解:依题可得: ,∴ .
又∵m、n恰好是等腰△ABC的两条边的边长,
①若腰为2,底为4,
此时不能构成三角形,舍去.
②若腰为4,底为2,
∴C△ABC=4+4+2=10.
故答案为:B.
【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.
7.【答案】A
【考点】三角形的面积,等边三角形的判定与性质,勾股定理,菱形的性质,相似三角形的判定与性质
【解析】【解答】解:∵菱形ABCD的周长为16,∴菱形ABCD的边长为4,
∵∠BAD=60°,
∴△ABD是等边三角形,
又∵O是菱形对角线AC、BD的交点,
∴AC⊥BD,
在Rt△AOD中,
∴AO= ,
∴AC=2A0=4 ,
∴S△ACD= ·OD·AC= ×2×4 =4 ,
又∵O、E分别是中点,
∴OE∥AD,
∴△COE∽△CAD,
∴ ,
∴ ,
∴S△COE= S△CAD= ×4 = .
故答案为:A.
【分析】根据菱形的性质得菱形边长为4,AC⊥BD,由一个角是60度的等腰三角形是等边三角形得△ABD是等边三角形;在Rt△AOD中,根据勾股定理得AO= ,AC=2A0=4 ,根据三角形面积公式得S△ACD= ·OD·AC=4 ,根据中位线定理得OE∥AD,由相似三角形性质得 ,从而求出△OCE的面积.
8.【答案】C
【考点】三角形的面积,一次函数图像与坐标轴交点问题
【解析】【解答】解:设直线l解析式为:y=kx+b,设l与x轴交于点A(- ,0),与y轴交于点B(0,b),
∴
∴(2-k)2=8 ,
∴k2-12k+4=0或(k+2)2=0,
∴k= 或k=-2.
∴满足条件的直线有3条.
故答案为:C.
【分析】设直线l解析式为:y=kx+b,设l与x轴交于点A(- ,0),与y轴交于点B(0,b),依题可得关于k和b的二元一次方程组,代入消元即可得出k的值,从而得出直线条数.
二、填空题
9.【答案】3
【考点】中位数
【解析】【解答】解:将数据从小到大排列:1,2,3,5,6,∴中位数为:3.
故答案为:3.
【分析】将此组数据从小到大或从大到小排列,正好是奇数个,处于中间的那个数即为这组数据的中位数;由此即可得出答案.
10.【答案】3.6×108
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:∵360 000 000=3.6×108 , 故答案为:3.6×108.
【分析】学计数法:将一个数字表示成 a×10的n次幂的形式,其中1≤|a|
相关试卷
这是一份江苏省徐州巿2024年中考数学模拟汇编试题(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省宿迁市2024年中考数学模拟汇编试题(含答案),共13页。试卷主要包含了 一组数据等内容,欢迎下载使用。
这是一份2024年江苏省宿迁市中考数学模拟试卷(含解析版),共40页。