所属成套资源:【备战2025】2025年中考数学一轮复习学案(含答案)【人教版】
- 第四章 三角形 第1节 线段、角、相交线与平行线 学案(含答案)-【考点探究】2025年中考数学一轮复习(人教版) 学案 0 次下载
- 第四章 三角形 第2节 一般三角形及其性质 学案(含答案)-【考点探究】2025年中考数学一轮复习(人教版) 学案 0 次下载
- 第四章 三角形 第4节 等腰三角形 学案(含答案)-【考点探究】2025年中考数学一轮复习(人教版) 学案 0 次下载
- 第四章 三角形 第5节 直角三角形与勾股定理 学案(含答案)-【考点探究】2025年中考数学一轮复习(人教版) 学案 0 次下载
- 第四章 三角形 第6节 相似三角形 学案(含答案)-【考点探究】2025年中考数学一轮复习(人教版) 学案 0 次下载
第四章 三角形 第3节 全等三角形 学案(含答案)-【考点探究】2025年中考数学一轮复习(人教版)
展开
这是一份第四章 三角形 第3节 全等三角形 学案(含答案)-【考点探究】2025年中考数学一轮复习(人教版),共8页。学案主要包含了知识体系,考点清单,基础演练等内容,欢迎下载使用。
【知识体系】
【考点清单】
知识点1 全等三角形的概念
知识点2 全等三角形的性质与判定
技巧提示
1.对应顶点应找对,书写应按顺序对应;2.注意公共边、公共角这些重要的隐含条件的应用.
【基础演练】
已知在△ABC和△DEF中,AB=DE,请回答相关问题.
(1)将两个三角形按图1所示方式放置.
①若AB⊥BF,DE⊥BF,BE=CF,求证:△ABC≌△DEF.
证明:∵AB⊥BF,DE⊥BF,
∴∠ABC=∠DEF=90°.
∵BE=CF,
∴BE+EC=CF+EC,即BC=EF.
在△ABC和△DEF中,
AB=DE,∠ABC=∠DEF,BC=EF,
∴△ABC≌△DEF(SAS).
判定依据: .
②若∠A=∠D,∠B=∠DEF,求证:△ABC≌△DEF.
证明:在△ABC和△DEF中,
∠A=∠D,AB=DE,∠B=∠DEF,
∴△ABC≌△DEF(ASA).
判定依据: .
(2)将两个三角形按图2所示方式摆放(点D,F分别和点A,C重合).
①添加一个条件: ,利用SSS使得△ABC≌△DEF,并写出证明过程.
②添加一个条件: ,利用HL,使得△ABC≌△DEF,并写出证明过程.
(3)将两个三角形按图3所示方式摆放,∠B=∠E=∠ACF,求证:△ABC≌△DEF.
真题精粹·重变式
考向1 全等三角形的性质与判定 6年3考
1.(2023·福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.
2.(2022·福建)如图,点B,F,C,E在同一条直线上,BF=EC,AB=DE,∠B=∠E,求证:∠A=∠D.
3.(2021·福建)如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C.
考向2 特殊四边形背景下的全等三角形 6年3考
5.(2024·福建)如图,在菱形ABCD中,点E,F分别在边BC,CD上,且∠AEB=∠AFD.求证:BE=DF.
6.(2020·福建)如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.
7.(2019·福建)如图,E,F分别是矩形ABCD的边AB,CD上的一点,且DF=BE.求证:AF=CE.
定义
全等三角形
能够完全重合的两个三角形叫作全等三角形;
△ABC和△DEF全等,记作△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”
基本元素
对应边
AB和DE,BC和EF,AC和DF是对应边
对应顶点
点A和点D,点C和点F,点B和点E是对应顶点
对应角
∠A和∠D,∠C和∠F,∠B和∠E是对应角
全等三角
形的性质
(1)全等三角形的对应边、对应角① .
(2)全等三角形的对应角平分线、对应中线、对应高② .
(3)全等三角形的周长、面积③
三角形全
等的判定
一般三角
形全等
SSS(三边对应相等)
SAS(两边和它们的夹边对应相等)
ASA(两角和它们的夹边对应相等)
AAS(两角和其中一个角的对边对应相等)
直角三角
形全等
(1)斜边和一条直角边对应相等(HL) .
(2)证明两个直角三角形全等同样可以用SAS、ASA和AAS
热点训练
4.如图,OB平分∠AOC,D,E,F分别是射线OA,OB,OC上的点,D,E,F不与O点重合,连接ED,EF,若添加下列条件中的某一个,就能够使△DOE≌△FOE,你认为要添加的条件是( )
A.OD=OE
B.OE=OF
C.∠ODE=∠OED
D.∠ODE=∠OFE
热点训练
8.如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.
参考答案
回归教材·过基础
考点清单
①相等 ②相等 ③相等
基础演练
(1)①两边和它们的夹角分别相等的两个三角形全等
②两角和它们的夹边分别相等的两个三角形全等
(2)①BC=EF 证明:在△ABC和△DEF中,
BC=EF,AB=DE,AC=DF,
∴△ABC≌△DEF(SSS).
②∠ABC=∠DEF=90° 证明:在Rt△ABC和Rt△DEF中,
AC=DF,AB=DE,
∴△ABC≌△DEF(HL).
(3)证明:∵∠ACE=∠A+∠B,∠ACE=∠ACF+∠FDE,∠B=∠ACF,
∴∠A=∠FDE.
在△ABC和△DEF中,
∠A=∠FDE,AB=DE,∠B=∠E,
∴△ABC≌△DEF(ASA).
真题精粹·重变式
1.证明:∵∠AOD=∠COB,
∴∠AOD-∠BOD=∠COB-∠BOD,
即∠AOB=∠COD.
在△AOB和△COD中,
OA=OC,∠AOB=∠COD,OB=OD,
∴△AOB≌△COD(SAS),∴AB=CD.
2.证明:∵BF=EC,
∴BF+CF=EC+CF,
即BC=EF.
在△ABC和△DEF中,
AB=DE,∠B=∠E,BC=EF,
∴△ABC≌△DEF(SAS),∴∠A=∠D.
3.证明:∵DE⊥AC,DF⊥AB,
∴∠BFD=∠CED=90°.
在△BDF和△CDE中,
BF=CE,∠BFD=∠CED,DF=DE,
∴△BDF≌△CDE(SAS),∴∠B=∠C.
4.D
5.证明:∵四边形ABCD是菱形,
∴AB=AD,∠B=∠D.
在△ABE和△ADF 中,
∠B=∠D,∠AEB=∠AFD,AB=AD,
∴△ABE≌△ADF(AAS),
∴BE=DF.
6.证明:∵四边形ABCD是菱形,
∴∠B=∠D,AB=AD.
在△ABE和△ADF中,
AB=AD,∠B=∠D,BE=DF,
∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.
7.证明:∵四边形ABCD是矩形,
∴∠D=∠B=90°,AD=BC.
在△ADF和△CBE中,
AD=CB,∠D=∠B,DF=BE,
∴△ADF≌△CBE(SAS),
∴AF=CE.
8.证明:∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC,
∴∠OAE=∠OCF.
在△AOE和△COF中,
∠OAE=∠OCF,OA=OC,∠AOE=∠COF,
∴△AOE≌△COF(ASA),
∴OE=OF.
相关学案
这是一份第四章 三角形 第7节 锐角三角函数 学案(含答案)-【考点探究】2025年中考数学一轮复习(人教版),共13页。学案主要包含了知识体系,考点清单,基础演练等内容,欢迎下载使用。
这是一份第四章 三角形 第6节 相似三角形 学案(含答案)-【考点探究】2025年中考数学一轮复习(人教版),共8页。学案主要包含了知识体系,考点清单,基础演练等内容,欢迎下载使用。
这是一份第四章 三角形 第5节 直角三角形与勾股定理 学案(含答案)-【考点探究】2025年中考数学一轮复习(人教版),共7页。学案主要包含了考点清单,基础演练等内容,欢迎下载使用。