所属成套资源:人教版数学九上期末复习讲练专项(2份,原卷版+解析版)
人教版数学九上期末复习讲练专项24 与圆有关计算(三大考点+5种类型阴影面积)(2份,原卷版+解析版)
展开
这是一份人教版数学九上期末复习讲练专项24 与圆有关计算(三大考点+5种类型阴影面积)(2份,原卷版+解析版),文件包含人教版数学九上期末复习讲练专项24与圆有关计算三大考点+5种类型阴影面积原卷版doc、人教版数学九上期末复习讲练专项24与圆有关计算三大考点+5种类型阴影面积解析版doc等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
考点1: 弧长、扇形面积的有关计算
扇形:(1)弧长公式:;
(2)扇形面积公式:
:圆心角 :扇形多对应的圆的半径 :扇形弧长 :扇形面积
考点2: 圆锥的有关计算
圆锥侧面展开图
(1)=
(2)圆锥的体积:
注意:圆锥的底周长=扇形的弧长()
考点3: 阴影部分面积的计算
类型一:直接法
所求阴影部分为扇形、三角形或特殊四边形时,直接用面积公式进行求解.
类型二:直接和差法
所求阴影部分面积可以看成扇形、三角形、特殊四边形面积相加减.
类型三:构造和差法
所求阴影部分面积需要添加辅助线构造扇形、三角形或特殊四边形,然后进行相加减.构造图形时一般先观 察阴影部分图形:
1.若阴影部分图形有一部分是弧线,找出弧线所对应的 圆心,连接弧线端点与圆心构造扇形;
2.若阴影部分是由图形旋转构成,旋转中心即为圆心, 分别将旋转前后的对应点连接,端点与旋转中心连接 构造扇形.
类型四:等积转化法
利用等积转化将所求阴影部分面积转化为求扇形、 三角形、特殊四边形的面积或它们面积的和差
类型五:容斥原理法
当阴影部分是由几个图形叠加形成时,求解阴影部分面积需先找出叠加前的几个图形,然后理清图形之间 的重叠关系.计算方法为:阴影部分面积=叠加前的几个 图形面积之和-(多加部分面积+空白部分面积).
如图,阴影部分是扇形CAE 和扇形CBD 的重叠部分,则
S阴影 =S扇形CAE +S扇形CBD -S△ABC .
【考点1 弧长、扇形面积的有关计算】
【典例1】(2022•丹东)如图,AB是⊙O的直径,C是⊙O上一点,连接AC,OC,若AB=6,∠A=30°,则的长为( )
A.6πB.2πC.πD.π
【答案】D
【解答】解:∵直径AB=6,
∴半径OB=3,
∵圆周角∠A=30°,
∴圆心角∠BOC=2∠A=60°,
∴的长是=π,
故选:D.
【变式1-1】(2022•大名县三模)已知一个扇形的圆心角为120°,半径是6cm,则这个扇形的弧长是( )
A.8πB.6πC.4πD.2π
【答案】C
【解答】解:根据弧长的公式l=,
得到:l==4π,
故选:C.
【变式1-2】(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是( )
A.πB.πC.πD.π
【答案】B
【解答】解:∵CA=CB,CD⊥AB,
∴AD=DB=AB′.
∴∠AB′D=30°,
∴α=30°,
∵AC=4,
∴AD=AC•cs30°=4×=2,
∴,
∴的长度l==π.
故选:B.
【变式1-3】(2022•河北)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则的长是( )
A.11πcmB.πcmC.7πcmD.πcm
【答案】A
【解答】解:OA⊥PA,OB⊥PB,OA,OB交于点O,如图,
∴∠OAP=∠OBP=90°,
∵∠P=40°,
∴∠AOB=140°,
∴优弧AMB对应的圆心角为360°﹣140°=220°,
∴优弧AMB的长是:=11π(cm),
故选:A.
【考点2 圆锥的有关计算】
【典例2】(2022•牡丹江)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是( )
A.90°B.100°C.120°D.150°
【答案】C
【解答】解:圆锥侧面展开图的弧长是:2π×1=2π,
设圆心角的度数是n度.
则=2π,
解得:n=120.
故选:C
【变式2-1】(2022•南丹县二模)如图,圆锥体的高,底面圆半径r=1cm,则该圆锥体的侧面展开图的圆心角的度数是( )
A.60°B.90°C.120°D.150°
【答案】C
【解答】解:根据题意,圆锥的母线长为=3,
设该圆锥体的侧面展开图的圆心角的度数为n°,
所以2π×1=,
解得n=120,
即该圆锥体的侧面展开图的圆心角的度数是120°.
故选:C.
【变式2-2】(2022春•张湾区校级月考)如图,小明用图中的扇形纸片作一个圆锥的侧面,已知扇形的圆心角为216°,面积是15πcm2,那么这个圆锥的底面半径是( )
A.2cmB.3cmC.4cmD.5cm
【答案】B
【解答】解:设扇形的半径为Rcm,
根据题意得:=15π,
解得:R=5,
则扇形的弧长==6π(cm),
设圆锥的底面半径为rcm,则6π=2πr;
∴r=3.
故选:B.
【典例3】(2022•济宁)已知圆锥的母线长8cm,底面圆的直径6cm,则这个圆锥的侧面积是( )
A.96πcm2B.48πcm2C.33πcm2D.24πcm2
【答案】D
【解答】解:∵底面圆的直径为6cm,
∴底面圆的半径为3cm,
∴圆锥的侧面积=×8×2π×3=24πcm2.
故选:D.
【变式3-1】(2022•柳州)如图,圆锥底面圆的半径AB=4,母线长AC=12,则这个圆锥的侧面积为( )
A.16πB.24πC.48πD.96π
【答案】C
【解答】解:弧AA′的长,就是圆锥的底面周长,即2π×4=8π,
所以扇形的面积为×8π×12=48π,
即圆锥的侧面积为48π,
故选:C.
【变式3-2】(2022•大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是( )
A.60πB.65πC.90πD.120π
【答案】B
【解答】解:圆锥侧面展开图扇形的半径为:=13,其弧长为:2×π×5=10π,
∴圆锥侧面展开图的面积为:=65π.
故选:B.
【考点3 直接和差法】
【典例3】(2022•鞍山)如图,在矩形ABCD中,AB=2,BC=,以点B为圆心,BA长为半径画弧,交CD于点E,连接BE,则扇形BAE的面积为( )
A.B.C.D.
【答案】C
【解答】解:∵四边形ABCD是矩形,
∴∠ABC=∠C=90°,
∵BA=BE=2,BC=,
∴cs∠CBE==,
∴∠CBE=30°,
∴∠ABE=90°﹣30°=60°,
∴S扇形BAE==,
故选:C.
【变式3-1】(2022•长春一模)如图,圆心重合的两圆半径分别为4、2,∠AOB=120°,则阴影部分图形的面积为( )
A.4πB.πC.8πD.16π
【答案】C
【解答】解:S阴影=﹣=8π.
故选:C.
【变式3-2】(2022•巩义市模拟)如图,在△ABC中,AB=AC=10,BC=12,分别以点A,B,C为圆心,AB的长为半径画弧,与该三角形的边相交,则图中阴影部分的面积为( )
A.96﹣πB.96﹣25πC.48﹣πD.48﹣π
【答案】D
【解答】解:作AD⊥BC于点D,
∵AB=AC=10,BC=12,
∴BD=CD=6,
∴AD==8,
∴S阴影部分=×12×8﹣π×52=48﹣.
故选:D.
【典例4】(2022•重庆)如图,在矩形ABCD中,AB=1,BC=2,以B为圆心,BC的长为半径画弧,交AD于点E.则图中阴影部分的面积为 .(结果保留π)
【答案】π
【解答】解:∵以B为圆心,BC的长为半径画弧,交AD于点E,
∴BE=BC=2,
在矩形ABCD中,∠A=∠ABC=90°,AB=1,BC=2,
∴sin∠AEB==,
∴∠AEB=30°,
∴∠EBA=60°,
∴∠EBC=30°,
∴阴影部分的面积:S==π,
故答案为:π.
【变式4-1】(2021•德州)如图,在矩形ABCD中,AB=2,BC=4,以点A为圆心,AD长为半径画弧交BC于点E,连接AE,则阴影部分的面积为( )
A.6﹣B.4﹣C.6﹣D.6﹣
【答案】A
【解答】解:∵四边形ABCD是矩形,AD=BC=4,
∴∠B=∠DAB=90°,AD=AE=4,
∵AB=2,
∴cs∠BAE==,
∴∠BAE=30°,∠EAD=60°,
∴BE=AE=2,
∴阴影部分的面积S=S矩形ABCD﹣S△ABE﹣S扇形EAD
=2×4﹣××2﹣
=6﹣.
故选:A.
【考点4:构造和差法】
【典例5】(2022•铜仁市)如图,在边长为6的正方形ABCD中,以BC为直径画半圆,则阴影部分的面积是( )
A.9B.6C.3D.12
【答案】A
【解答】解:设AC与半圆交于点E,半圆的圆心为O,连接BE,OE,
∵四边形ABCD是正方形,
∴∠OCE=45°,
∵OE=OC,
∴∠OEC=∠OCE=45°,
∴∠EOC=90°,
∴OE垂直平分BC,
∴BE=CE,
∴弓形BE的面积=弓形CE的面积,
∴,
故选:A.
【变式5-1】(2022•赤峰)如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为( )
A.2πB.2C.2π﹣4D.2π﹣2
【答案】C
【解答】解:连接OE,OC,BC,
由旋转知AC=AD,∠CAD=30°,
∴∠BOC=60°,∠ACE=(180°﹣30°)÷2=75°,
∴∠BCE=90°﹣∠ACE=15°,
∴∠BOE=2∠BCE=30°,
∴∠EOC=90°,
即△EOC为等腰直角三角形,
∵CE=4,
∴OE=OC=2,
∴S阴影=S扇形OEC﹣S△OEC=﹣×=2π﹣4,
故选:C.
【变式5-2】(2022•贵港)如图,在▱ABCD中,AD=AB,∠BAD=45°,以点A为圆心、AD为半径画弧交AB于点E,连接CE,若AB=3,则图中阴影部分的面积是 .
【答案】5﹣π
【解答】解:过点D作DF⊥AB于点F,
∵AD=AB,∠BAD=45°,AB=3,
∴AD=×3=2,
∴DF=ADsin45°=2×=2,
∵AE=AD=2,
∴EB=AB−AE=,
∴S阴影=S▱ABCD−S扇形ADE−S△EBC
=3×2﹣﹣××2
=5﹣π,
故答案为:5﹣π.
【考点5:等积转化法】
【典例6】(2020•毕节市)如图,已知点C,D是以AB为直径的半圆的三等分点,弧CD的长为π,则图中阴影部分的面积为( )
A.πB.πC.πD.π+
【答案】A
【解答】解:连接CD、OC、OD.
∵C,D是以AB为直径的半圆的三等分点,
∴∠AOC=∠COD=∠DOB=60°,AC=CD,
又∵OA=OC=OD,
∴△OAC、△OCD是等边三角形,
∴∠AOC=∠OCD,
∴CD∥AB,
∴S△ACD=S△OCD,
∵弧CD的长为,
∴=,
解得:r=1,
∴S阴影=S扇形OCD==.
故选:A.
【变式6-1】(2022•黔西南州)如图,边长为4的正方形ABCD的对角线交于点O,以OC为半径的扇形的圆心角∠FOH=90°.则图中阴影部分面积是 .
【答案】2π﹣4
【解答】解:如图,∵四边形ABCD是正方形,
∴AC⊥BD,OA=OC=OB=OD,∠OBE=∠OCG=45°,S△OBC=S四边形ABCD=4,
∵∠BOC=∠EOG=90°,
∴∠BOE=∠COG,
在△BOE和△COG中,
,
∴△OBE≌△OCG(SAS),
∴S△OBE=S△OCG,
∴S四边形OECG=S△OBC=4,
∵△OBC是等腰直角三角形,BC=4,
∴OB=OC=2,
∴S阴=S扇形OFH﹣S四边形OECG
=﹣4
=2π﹣4,
故答案为:2π﹣4.
【变式6-2】(2022•长春一模)如图,点C、D分别是半圆AOB上的三等分点,若半圆的半径OA的长为3,阴影部分的面积是 .
【答案】π
【解答】解:连接OC、OD、CD.
∵点C,D为半圆的三等分点,
∴∠AOC=∠COD=∠BOD=60°,
∵OC=OD,
∴△COD是等边三角形,
∴∠OCD=60°,
∴∠OCD=∠AOC,
∴CD∥AB,
∵△COD和△CBD等底等高,
∴S△COD=S△BCD.
∴阴影部分的面积=S扇形COD==π.
故答案为:π.
【考点6:容斥原理法】
【典例7】(南宁)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )
A.B.C.2D.2
【答案】D
【解答】解:过A作AD⊥BC于D,
∵△ABC是等边三角形,
∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,
∵AD⊥BC,
∴BD=CD=1,AD=BD=,
∴△ABC的面积为=,
S扇形BAC==π,
∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,
故选:D.
【变式7-1】(2019•临沂)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是( )
A.2+πB.2++πC.4+πD.2+π
【答案】A
【解答】解:作OD⊥BC,则BD=CD,连接OB,OC,
∴OD是BC的垂直平分线,
∵=,
∴AB=AC,
∴A在BC的垂直平分线上,
∴A、O、D共线,
∵∠ACB=75°,AB=AC,
∴∠ABC=∠ACB=75°,
∴∠BAC=30°,
∴∠BOC=60°,
∵OB=OC,
∴△BOC是等边三角形,
∴OA=OB=OC=BC=2,
∵AD⊥BC,AB=AC,
∴BD=CD,
∴OD=OB=,
∴AD=2+,
∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,
∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+π,
故选:A.
【变式7-2】(2022•河南)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为 .
【答案】+
【解答】解:如图,设O′A′交于点T,连接OT.
∵OT=OB,OO′=O′B,
∴OT=2OO′,
∵∠OO′T=90°,
∴∠O′TO=30°,∠TOO′=60°,
∴S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)
=﹣(﹣×1×)
=+.
故答案为:+.
1.(2022•湖北)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则的长为( )
A.πB.πC.πD.2π
【答案】B
【解答】解:连接CD,如图所示:
∵∠ACB=90°,∠B=30°,AB=8,
∴∠A=90°﹣30°=60°,AC==4,
由题意得:AC=CD,
∴△ACD为等边三角形,
∴∠ACD=60°,
∴的长为:,
故选:B.
2.(2022•甘肃)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路()的长度为( )
A.20πmB.30πmC.40πmD.50πm
【答案】C
【解答】解:∵半径OA=90m,圆心角∠AOB=80°,
∴这段弯路()的长度为:=40π(m),
故选:C.
3.(2022•官渡区二模)在数学跨学科主题活动课上,芳芳用半径15cm,圆心角120°的扇形纸板,做了一个圆锥形的生日帽,如图所示.在不考虑接缝的情况下,这个圆锥形生日帽的底面圆半径是( )
A.3cmB.4cmC.5cmD.6cm
【答案】C
【解答】解:半径为15cm、圆心角为120°的扇形弧长是:=10πcm,
设圆锥的底面半径是rcm,
则2πr=10π,
解得:r=5.
故选:C.
4.(2022•周村区一模)如图,将半径为15cm的圆形纸片剪去圆心角为144°的一个扇形,用剩下的扇形围成一个圆锥的侧面(接缝忽略不计),这个圆锥的高是( )
A.8cmB.12cmC.20cmD.18cm
【答案】B
【解答】解:设圆锥的底面圆的半径为rcm,
根据题意得2πr=
解得r=9,
所以圆锥的高==12(cm).
故选:B.
5.(2022•文山市模拟)如图,已知由扇形AOB围成的圆锥的底面周长为,若∠AOB=80°,则扇形AOB的面积为( )
A.B.2πC.4πD.8π
【答案】D
【解答】解:∵扇形AOB围成的圆锥的底面周长为,
∴扇形的弧长为,
设扇形的半径为R,
则=,
解得:R=6,
所以扇形的面积为××6=8π,
故选:D.
6.(2022•禹城市模拟)如图,斗笠是一种遮挡阳光和蔽雨的编结帽,它可近似看成一个圆锥,已知该斗笠的侧面积为550πcm2,AB是斗笠的母线,长为25cm,AO为斗笠的高,BC为斗笠末端各点所在圆的直径,则OC的值为( )cm.
A.22B.23C.24D.25
【答案】A
【解答】解:∵侧面积为550πcm2,母线长为25cm,
∴l×25=550π,
解得l=44π,
∵2πr=44π,
∴OB=OC=r=22,
故选:A.
7.(2022•兰州)如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为( )
A.4.25πm2B.3.25πm2C.3πm2D.2.25πm2
【答案】D
【解答】解:S阴=S扇形DOA﹣S扇形BOC
=﹣
=2.25πm2.
故选:D.
8.(2020•攀枝花)如图,直径AB=6的半圆,绕B点顺时针旋转30°,此时点A到了点A',则图中阴影部分的面积是( )
A.B.C.πD.3π
【答案】D
【解答】解:∵半圆AB,绕B点顺时针旋转30°,
∴S阴影=S半圆A′B+S扇形ABA′﹣S半圆AB
=S扇形ABA′
=
=3π,
故选:D.
9.(2022春•大同期末)如图,正方形ABCD的边长为4,先以正方形的对角线AC为直径画圆,再以正方形的各边长为直径画半圆,则图中阴影部分的面积为( )
A.16B.8πC.16πD.8
【答案】A
【解答】解:∵正方形ABCD的边长为4,
∴AC=4,
∴图中阴影部分的面积=S正方形ABCD+4×以正方形的各边长为直径的半圆的面积﹣以正方形的对角线AC为直径圆的面积
=4×4+4××22π﹣(2)2π=16,
故选:A.
10.(2022•凉山州)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC=90°,则扇形部件的面积为( )
A.米2B.米2C.米2D.米2
【答案】C
【解答】解:连结BC,AO,如图所示,
∵∠BAC=90°,
∴BC是⊙O的直径,
∵⊙O的直径为1米,
∴AO=BO=(米),
∴AB==(米),
∴扇形部件的面积=π×()2=(米2),
故选:C.
11.(2021•青海)如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动)那么小羊A在草地上的最大活动区域面积是( )
A.πm2B.πm2C.πm2D.πm2
【答案】B
【解答】解:大扇形的圆心角是90度,半径是5,
所以面积==π(m2);
小扇形的圆心角是180°﹣120°=60°,半径是1m,
则面积==(m2),
则小羊A在草地上的最大活动区域面积=π+=π(m2).
故选:B.
12.(2020•资阳)如图,△ABC中,∠C=90,AC=BC=2.将△ABC绕着点A顺时针旋转90度到△AB1C1的位置,则边BC扫过区域的面积为( )
A.B.πC.D.2π
【答案】B
【解答】解:在Rt△ACB中,∠C=90,AC=BC=2,由勾股定理得:AB==2,
∵将△ABC绕着点A顺时针旋转90度到△AB1C1的位置,
∴∠CAC1=90°,
∴阴影部分的面积S=S+S﹣S△ACB﹣S
=+2×2﹣2×2﹣
=π,
故选:B.
13.(2018•巴彦淖尔)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=4,则图中阴影部分的面积为( )
A.+B.+2C.+D.2+
【答案】B
【解答】解:连接OE、AE,
∵点C为OA的中点,
∴EO=2OC,
∴∠CEO=30°,∠EOC=60°,
∴△AEO为等边三角形,
∴S扇形AOE==,
∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)
=﹣﹣(﹣)
=4π﹣π﹣+2
=+2
故选:B.
14.(2009•萧山区模拟)下图中三个圆的半径都是5cm,三个圆两两相交于圆心,则阴影部分的面积和为( )
A.πB.πC.25+πD.
【答案】B
【解答】解:由题意,得:
S阴影=3×S扇形=3×
=3×π=πcm2.
故选:B.
15.(2022•西宁)如图,等边三角形ABC内接于⊙O,BC=2,则图中阴影部分的面积是 .
【答案】
【解答】解:∵△ABC为等边三角形,
∴S△BOC=S△AOC,∠AOC=120°,
在△OBC中,OB=OC,∠BOC=120°,BC=2,
∴OB=OC=2,
∴S阴影=S扇形AOC==,
故答案为:.
16.(2022•香洲区一模)如图,在△ABC中,AB=AC=2cm,∠CBA=30°,以A为圆心,AB为半径作,以BC为直径作半圆,则图中阴影部分面积等于 cm2.
【答案】+
【解答】解:S扇形ACB==,S半圆CBF=π×()2=,S△ABC=×2×1=;
所以商标图案面积=S半圆CBF+S△ABC﹣S扇形ACB=+﹣=(+)cm2.
故答案是:+.
17.(2021•荆门)如图,正方形ABCD的边长为2,分别以B,C为圆心,以正方形的边长为半径的圆相交于点P,那么图中阴影部分的面积为 .
【答案】2﹣
【解答】解:连接PB、PC,作PF⊥BC于F,
∵PB=PC=BC,
∴△PBC为等边三角形,
∴∠PBC=60°,∠PBA=30°,
∴BF=PB•cs60°=PB=1,PF=PB•sin60°=,
则图中阴影部分的面积=[扇形ABP的面积﹣(扇形BPC的面积﹣△BPC的面积)]×2
=[﹣(﹣×2×)]×2=2﹣,
故答案为:2﹣.
18.(2021•凉山州)如图,将△ABC绕点C顺时针旋转120°得到△A'B'C,已知AC=3,BC=2,则线段AB扫过的图形(阴影部分)的面积为 .
【答案】
【解答】解:∵△ABC绕点C旋转120°得到△A′B′C,
∴△ABC≌△A′B′C,
∴S△ABC=S△A′B′C,∠BCB′=∠ACA′=120°.
∵AB扫过的图形的面积=S扇形ACA′+S△ABC﹣S扇形BCB′﹣S△A′B′C,
∴AB扫过的图形的面积=S扇形ACA′﹣S扇形BCB′,
∴AB扫过的图形的面积=﹣=.
故答案为:.
相关试卷
这是一份浙教版(2024)九年级上册3.1 圆课后作业题,文件包含浙教版数学九上考点提升训练第06讲与圆有关的计算3大考点原卷版doc、浙教版数学九上考点提升训练第06讲与圆有关的计算3大考点解析版doc等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。
这是一份人教版(2024)九年级上册24.3 正多边形和圆精品同步测试题,文件包含人教版数学九上同步讲练第24章第07讲正多边形与圆扇形的弧长与面积原卷版docx、人教版数学九上同步讲练第24章第07讲正多边形与圆扇形的弧长与面积解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
这是一份人教版(2024)九年级上册24.1.4 圆周角精品课时作业,文件包含人教版数学九上同步讲练第24章第03讲与圆有关的性质-圆周角定理与内接四边形原卷版docx、人教版数学九上同步讲练第24章第03讲与圆有关的性质-圆周角定理与内接四边形解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。