年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022-2023学年广东省广州二中九年级(上)期末数学试卷(含答案)

    2022-2023学年广东省广州二中九年级(上)期末数学试卷(含答案)第1页
    2022-2023学年广东省广州二中九年级(上)期末数学试卷(含答案)第2页
    2022-2023学年广东省广州二中九年级(上)期末数学试卷(含答案)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年广东省广州二中九年级(上)期末数学试卷(含答案)

    展开

    这是一份2022-2023学年广东省广州二中九年级(上)期末数学试卷(含答案),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    1.(3 分)如图图案中,不是中心对称图形的是()
    A. B. C.D. 2.(3 分)从拼音“ shuxue ”中随机抽取一个字母,抽中字母u 的概率为()
    1
    3
    1
    4
    1
    5
    1
    6
    3.(3 分)正十边形的中心角是()
    A.18B. 36C. 72D.144
    4.(3 分)已知O 半径为 4,圆心O 在坐标原点上,点 P 的坐标为(3, 4) ,则点 P 与O 的位置关系是()
    A.点 P 在O 内B.点 P 在O 上C.点 P 在O 外D.不能确定
    5.(3 分)某超市销售一种饮料.平均每天可售出 100 箱,每箱利润 12 元.为了扩大销售,
    增加利润,超市准备适当降价.据测算,若每箱降价 1 元,每天可多售出 20 箱.若要使每天销售饮料获利 1400 元,设每箱降价的价钱为 x 元,则根据题意可列方程()
    A. (12  x)(100  20x)  1400
    C. (12  x)(100  20x)  1400
    B. (12  x)(100  20x)  1400
    D. (12  x)(100  20x)  1400
    6.(3 分)当 a  0 时,函数 y  ax  1 与函数 y  a 在同一坐标系中的图象可能是()
    x
    A. B.
    C. D.
    7.(3 分)如图, ABC 中, CAB  65 ,在同一平面内,将ABC 绕点 A 旋转到AED 的位置,使得 DC / / AB ,则BAE 等于()
    A. 30B. 40C. 50D. 60
    8.(3 分)如图,正三角形 ABC 内接于圆 O,动点 P 在圆周的劣弧 AB 上,且不与 A,B 重合,则∠BPC 等于()
    A.30°B.60°C.90°D.45°
    9.(3 分)如图, O 的半径为 3,点 P 是弦 AB 延长线上的一点,连接OP ,若OP  4 ,
    P  30 ,则弦 AB 的长为()
    5
    2
    2C.
    D.2
    3
    5
    10.(3 分)在平面直角坐标系 xOy 中, A 为双曲线 y   6 上一点,点 B 的坐标为(4, 0) .若
    x
    AOB 的面积为 6,则点 A 的坐标为()
    A. (
    3
    4, )
    2
    B. (4,  3)
    2
    C. (2, 3) 或(2, 3)D. (3, 2) 或(3, 2)
    11.(3 分)已知二次函数 y  ax2  bx  c(a  0) 的图象如图所示,有下列 5 个结论:
    ① abc  0 ;② b  a  c ;③ 4a  2b  c  0 ;④ 2c  3b ;⑤ a  b  m(am  b)(m  1 的实数).其中正确的结论有()
    A.2 个B.3 个C.4 个D.5 个二、填空题(本大题共 9 小题,每小题 3 分,共 18 分)
    12.(3 分)若关于 x 的一元二次方程 x2  2x  k  0 有两个不相等的实数根,则 k 的取值范围是.
    13.(3 分)若反比例函数 y  k  1 的图象在其每个象限内, y 随 x 的增大而减小,则 k 的取
    x
    值范围为.
    14.(3 分)如图,四边形 ABCD 与四边形 ABCD 位似,位似中心为点O ,OC  6 ,CC  4 ,
    AB  3 ,则 AB  .
    15.(3 分)如图,小明同学用自制的直角三角形纸板 DEF 测量树的高度 AB .他调整自己的位置,设法使斜边 DF 保持水平,并且边 DE 与点 B 在同一直线上,已知纸板的两条直角边 DE  40cm , EF  20cm ,测得边 DF 离地面的高度 AC  1m . CD  8m .则树高 AB  m .
    16.(3 分)如图,在ABC 中,BAC  90 ,AD  BC ,若 AD  3 ,则 BD  DC 的值为 .
    17.(3 分)正比例函数 y  k x 与反比例函数 y  k2 的图象交于 A 、 B 两点,若点 A 的坐标
    1x
    是(1, 2) ,则点 B 的坐标是.
    18.(3 分)已知抛物线 y  x2  mx  n 的图象经过(3, 0) , (1, 0) .则此抛物线的顶点坐标
    是.
    19.(3 分)如图所示,矩形纸片 ABCD 中, AD  12cm ,把它分割成正方形纸片 ABFE 和矩形纸片 EFCD 后,分别裁出扇形 ABF 和半径最大的圆,恰好能作为一个圆锥的底面和侧
    面,则圆锥的表面积为 cm2 .(结果保留)
    20.(3 分)如图,RtABC 中, AB  BC , AB  6 , BC  4 , P 是ABC 内部的一个动点,且满足PAB  PBC ,则线段CP 长的最小值为.
    三、解答题:(每小题 10 分,共 40 分)
    21.(10 分)解方程:
    (1) x2  2x  3  0(2) (2x  1)2  3(2x  1) .
    发言次数 n
    A
    0n  3
    B
    3n  6
    c
    6n  9
    p
    9n  12
    E
    12n  15
    F
    15n  18
    22.(10 分)某会议期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列 问题:
    样本容量为 ,并补全直方图;
    已知 A 组发表提议的代表中恰有 1 位女士, E 组发表提议的代表中只有 2 位男士,现从 A 组与 E 组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.
    23.(10 分)如图,已知一次函数 y  x  2 与反比例函数 y  k 的图象交于 A , B 两点,与
    x
    x 轴交于点 M ,且点 A 的横坐标是2 , B 点的横坐标是 4.
    求反比例函数的解析式;
    求AOM 的面积;
    根据图象直接写出反比例函数值大于一次函数值时 x 的取值范围.
    24.(10 分)如图, A , B , C 三点在O 上,直径 BD 平分ABC ,过点 D 作 DE / / AB 交弦 BC 于点 E ,在 BC 的延长线上取一点 F ,使得 EF  DE .
    求证: DF 是O 的切线;
    连接 AF 交 DE 于点 M ,若 AD  4 , DE  5 ,求 DM 的长.
    2022-2023 学年广东省广州二中九年级(上)期末数学试卷
    参考答案与试题解析
    一、选择题(共 11 小题,每小题 3 分,满分 33 分)
    1.(3 分)如图图案中,不是中心对称图形的是()
    A. B. C.D.
    【解答】解: A 、是中心对称图形,故 A 选项错误;
    B 、是中心对称图形,故 B 选项错误;
    C 、是中心对称图形,故C 选项错误; D 、不是中心对称图形,故 D 选项正确; 故选: D .
    2.(3 分)从拼音“ shuxue ”中随机抽取一个字母,抽中字母u 的概率为()
    1
    3
    1
    4
    1
    5
    1
    6
    【解答】解:单词“ shuxue ”,共 6 个字母, u 有 2 个,
    抽中l 的概率为 2  1 ,
    63
    故选: A .
    3.(3 分)正十边形的中心角是()
    A.18B. 36C. 72D.144
    【解答】解:正十边形的中心角为: 360  36 .
    10
    故选: B .
    4.(3 分)已知O 半径为 4,圆心O 在坐标原点上,点 P 的坐标为(3, 4) ,则点 P 与O 的位置关系是()
    A.点 P 在O 内B.点 P 在O 上C.点 P 在O 外D.不能确定
    【解答】解: P 的坐标为(3, 4) ,
    32  42
    OP  5 .
    O 的半径为 4, 5  4 ,
    点 P 在O 外. 故选: C .
    5.(3 分)某超市销售一种饮料.平均每天可售出 100 箱,每箱利润 12 元.为了扩大销售,
    增加利润,超市准备适当降价.据测算,若每箱降价 1 元,每天可多售出 20 箱.若要使每天销售饮料获利 1400 元,设每箱降价的价钱为 x 元,则根据题意可列方程()
    A. (12  x)(100  20x)  1400
    C. (12  x)(100  20x)  1400
    B. (12  x)(100  20x)  1400
    D. (12  x)(100  20x)  1400
    【解答】解:设每箱降价的价钱为 x 元,则每箱的利润为(12  x) 元,每天的销售量为
    (100  20x) 箱,
    依题意,得(12  x)(100  20x)  1400 . 故选: A .
    6.(3 分)当 a  0 时,函数 y  ax  1 与函数 y  a 在同一坐标系中的图象可能是()
    x
    A. B.
    C. D.
    【解答】解:当 a  0 时, y  ax  1 过一、二、三象限, y  a 在一、三象限;
    x
    当 a  0 时, y  ax  1 过一、二、四象限, y  a 在二、四象限;
    x
    故选: A .
    7.(3 分)如图, ABC 中, CAB  65 ,在同一平面内,将ABC 绕点 A 旋转到AED 的位置,使得 DC / / AB ,则BAE 等于()
    A. 30B. 40C. 50D. 60
    【解答】解: DC / / AB ,
    DCA  CAB  65 ,
    ABC 绕点 A 旋转到AED 的位置,
    BAE  CAD , AC  AD ,
    ADC  DCA  65 ,
    CAD  180  ADC  DCA  50 ,
    BAE  50 . 故选: C .
    8.(3 分)如图,正三角形 ABC 内接于圆 O,动点 P 在圆周的劣弧 AB 上,且不与 A,B 重合,则∠BPC 等于()
    A.30°B.60°C.90°D.45°
    【解答】解:∵△ABC 正三角形,
    ∴∠A=60°,
    ∴∠BPC=60°. 故选:B.
    9.(3 分)如图, O 的半径为 3,点 P 是弦 AB 延长线上的一点,连接OP ,若OP  4 ,
    P  30 ,则弦 AB 的长为()
    5
    2
    2C.
    D.2
    3
    5
    【解答】解:连接OA ,作OC  AB 于C , 则 AC  BC ,
     OP  4 , P  30 ,
    OC  2 ,
    OA2  OC2
    5
     AC ,
    5
     AB  2 AC  2,
    故选: A .
    10.(3 分)在平面直角坐标系 xOy 中, A 为双曲线 y   6 上一点,点 B 的坐标为(4, 0) .若
    x
    AOB 的面积为 6,则点 A 的坐标为()
    A. (
    3
    4, )
    2
    B. (4,  3)
    2
    C. (2, 3) 或(2, 3)
    【解答】解:设点 A 的坐标为( 6 , a) ,
    a
    点 B 的坐标为(4, 0) .若AOB 的面积为 6,
    D. (3, 2) 或(3, 2)
     SAOB
     1  4 | a | 6 ,
    2
    解得: a  3 ,
    点 A 的坐标为(2 , 3)(2 , 3) . 故选: C .
    11.(3 分)已知二次函数 y  ax2  bx  c(a  0) 的图象如图所示,有下列 5 个结论:
    ① abc  0 ;② b  a  c ;③ 4a  2b  c  0 ;④ 2c  3b ;⑤ a  b  m(am  b)(m  1 的实数).其中正确的结论有()
    A.2 个B.3 个C.4 个D.5 个
    【解答】解:开口向下,a  0 ;对称轴在 y 轴的右侧, a 、b 异号,则b  0 ;抛物线与 y 轴的交点在 x 轴的上方, c  0 ,则 abc  0 ,所以①不正确;
    当 x  1 时图象在 x 轴上,则 y  a  b  c  0 ,即 a  c  b ,所以②不正确;
    对称轴为直线 x  1 ,则 x  2 时图象在 x 轴上方,则 y  4a  2b  c  0 ,所以③正确;
    x   b  1,则 a   1 b ,而 a  b  c  0 ,则 1 b  b  c  0 , 2c  3b ,所以④不正确;
    2a22
    开口向下, 当 x  1 , y 有最大值 a  b  c ; 当 x  m(m  1) 时, y  am2  bm  c , 则
    a  b  c  am2  bm  c ,即 a  b  m(am  b)(m  1) ,所以⑤正确. 故选: A .
    二、填空题(本大题共 9 小题,每小题 3 分,共 18 分)
    12.(3 分)若关于 x 的一元二次方程 x2  2x  k  0 有两个不相等的实数根,则 k 的取值范围是k  1 .
    【解答】解:根据题意得△  (2)2  4  k  0 ,
    解得 k  1 .
    故答案为: k  1 .
    13.(3 分)若反比例函数 y  k  1 的图象在其每个象限内, y 随 x 的增大而减小,则 k 的取
    x
    值范围为k  1 .
    【解答】解:反比例函数 y  k  1 的图象在其每个象限内, y 随 x 的增大而减小,
    x
     k  1  0 , 解得: k  1,
    故答案为: k  1.
    14.(3 分)如图,四边形 ABCD 与四边形 ABCD 位似,位似中心为点O ,OC  6 ,CC  4 ,
    AB  3 ,则 AB  5.
    【解答】解:四边形 ABCD 与四边形 ABCD 位似,其位似中心为点O ,OC  6 ,CC  4 ,
     OC  6
     3 ,
    OC
     AB AB
    105
     3 ,
    5
     AB  3 ,
     AB  5 . 故答案为:5.
    15.(3 分)如图,小明同学用自制的直角三角形纸板 DEF 测量树的高度 AB .他调整自己的位置,设法使斜边 DF 保持水平,并且边 DE 与点 B 在同一直线上,已知纸板的两条直角边 DE  40cm ,EF  20cm ,测得边 DF 离地面的高度 AC  1m .CD  8m .则树高 AB  5
    m .
    【解答】解:DEF  BCD  90 ,
    D  D ,
    DEF∽DCB ,
     BC  DC ,
    EFDE
     DE  40cm  0.4m , EF  20cm  0.2m , AC  1m , CD  8m ,
     BC  8 ,
    0.20.4
     BC  4 米,
     AB  AC  BC  1  4  5 米, 故答案为:5.
    16.(3 分)如图,在 ABC 中,BAC  90 ,AD  BC ,若 AD  3 ,则 BD  DC 的值为 9.
    【解答】解:BAC  90 ,
    BAD  CAD  90 ,
     AD  BC ,
    ADB  CDA  90 ,
    B  BAD  90 ,
    B  CAD ,
    ADB∽CDA ,
     AD  BD ,
    CDAD
    即 BD  CD  AD 2  32  9 , 故答案为:9.
    17.(3 分)正比例函数 y  k x 与反比例函数 y  k2 的图象交于 A 、 B 两点,若点 A 的坐标
    1x
    是(1, 2) ,则点 B 的坐标是(1, 2) .
    【解答】解:正比例函数 y  k x 与反比例函数 y  k2 的两交点 A 、 B 关于原点对称,
    1x
    点 A(1, 2) 关于原点对称点 B 的坐标为(1, 2) . 故答案为(1, 2) .
    18.(3 分)已知抛物线 y  x2  mx  n 的图象经过(3, 0) ,(1, 0) .则此抛物线的顶点坐标是
    (1, 4) .
    【解答】解:二次函数 y  x2  mx  n 过点(3, 0) , C(1, 0) ,
    0  (?3)2  (?3)m  n

     0  12  m  n.
    n  3
    解得: m  2 ,

    二次函数的解析式为 y  x2  2x  3 ;
     y  x2  2x  3  (x  1)2  4 ,
    抛物线的顶点坐标为: (1, 4) . 故答案为: (1, 4) .
    19.(3 分)如图所示,矩形纸片 ABCD 中, AD  12cm ,把它分割成正方形纸片 ABFE 和矩形纸片 EFCD 后,分别裁出扇形 ABF 和半径最大的圆,恰好能作为一个圆锥的底面和侧
    面,则圆锥的表面积为 20 cm2 .(结果保留)
    【解答】解:设圆锥的底面半径为 xcm ,则扇形 ABF 的半径为(12  2 x)cm , 由题意得,
    2x  90(12  2x) ,
    180
    解得 x  2 ,
    即圆锥的底面半径为 2cm , AB  BF  12  4  8cm ,
    圆锥的底面积为 22  4(cm2 ) ,侧面积为 1 82  16(cm2 ) ,
    4
    圆锥的表面积为 416 20(cm2 ) , 故答案为: 20.
    20.(3 分)如图,RtABC 中, AB  BC , AB  6 , BC  4 , P 是ABC 内部的一个动点,
    且满足PAB  PBC ,则线段CP 长的最小值为 2.
    【解答】解:ABC  90 ,
    ABP  PBC  90 ,
    PAB  PBC
    BAP  ABP  90 ,
    APB  90 ,
    点 P 在以 AB 为直径的O 上,连接OC 交O 于点 P ,此时 PC 最小, 在RtBCO 中,OBC  90 , BC  4 , OB  3 ,
    OB2  BC2
    OC  5 ,
     PC  OC  OP  5  3  2 .
     PC 最小值为 2. 故答案为 2.
    三、解答题:(每小题 10 分,共 40 分)
    21.(10 分)解方程:
    (1) x2  2x  3  0 ;
    (2) (2x  1)2  3(2x  1) .
    【解答】解:(1) x2  2x  3  0 ,
    (x  3)(x  1)  0
     x1  3 , x2  1 ;
    (2) (2x  1)2  3(2x  1) ,
    (2x  1)2  3(2x  1)  0 ,
    (2x  1)(2x  1  3)  0 ,
    2x  1  0 或2x  1  3  0 ,
    x   1 , x  1 .
    122
    发言次数 n
    A
    0n  3
    B
    3n  6
    c
    6n  9
    p
    9n  12
    22.(10 分)某会议期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列 问题:
    样本容量为 50 ,并补全直方图;
    已知 A 组发表提议的代表中恰有 1 位女士, E 组发表提议的代表中只有 2 位男士,现从 A 组与 E 组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.
    【解答】解:(1)样本容量为:10  20%  50 ,
    则 A 组的人数为:50  6%  3 (人) , C 组的人数为: 50  30%  15 (人) , D 组的人数为:
    50  26%  13 (人) , E 组的人数为: 50  8%  4 (人) ,
     F 组的人数为: 50  3  10  15  13  4  5 (人) , 故答案为:50,
    补全直方图如下:
    (2) A 组发表提议的代表中恰有 1 位女士, E 组发表提议的代表中只有 2 位男士,
     A 组有 1 位女士、2 位男士, E 组有 2 位男士,2 位女士, 画树状图如下:
    E
    12n  15
    F
    15n  18
    共有 12 种等可能的结果,其中所抽的两位代表恰好都是男士的结果有 4 种,
    所抽的两位代表恰好都是男士的概率为 4  1 .
    123
    23.(10 分)如图,已知一次函数 y  x  2 与反比例函数 y  k 的图象交于 A , B 两点,与
    x
    x 轴交于点 M ,且点 A 的横坐标是2 , B 点的横坐标是 4.
    求反比例函数的解析式;
    求AOM 的面积;
    根据图象直接写出反比例函数值大于一次函数值时 x 的取值范围.
    【解答】解:(1)点 A 的横坐标是2 , B 点的横坐标是 4,
    当 x  2 时, y  (2)  2  4 , 当 x  4 时, y  4  2  2 ,
     A(2, 4) , B(4, 2) ,
    反比例函数 y  k 的图象经过 A , B 两点,
    x
     k  2  4  8 ,
    反比例函数的解析式为 y   8 ;
    x
    (2)一次函数 y  x  2 中,令 y  0 ,则 x  2 ,
     M (2, 0) ,即 MO  2 ,
    AOM 的面积 1  OM  | y
    2A
    | 1  2  4  4 ;
    2
    (3) A(2, 4) , B(4, 2) ,
    由图象可得,反比例函数值大于一次函数值时 x 的取值范围为: 2  x  0 或 x  4 .
    24.(10 分)如图, A , B , C 三点在O 上,直径 BD 平分ABC ,过点 D 作 DE / / AB 交弦 BC 于点 E ,在 BC 的延长线上取一点 F ,使得 EF  DE .
    求证: DF 是O 的切线;
    连接 AF 交 DE 于点 M ,若 AD  4 , DE  5 ,求 DM 的长.
    【解答】(1)证明: BD 平分ABC ,
    ABD  CBD .
     DE / / AB ,
    ABD  BDE .
    CBD  BDE .
     ED  EF ,
    EDF  EFD .
    EDF  EFD  EDB  EBD  180 ,
    BDF  BDE  EDF  90 .
    OD  DF .
     OD 是半径,
     DF 是O 的切线.
    (2)解:连接 DC ,
     BD 是O 的直径,
    BAD  BCD  90 .
    ABD  CBD , BD  BD ,
    ABD  CBD .
    CD  AD  4 , AB  BC .
     DE  5 ,
    DE2  DC2
     CE 
    CBD  BDE ,
     BE  DE  5 .
     3 , EF  DE  5 .
     BF  BE  EF  10 , BC  BE  EC  8 .
     AB  8 .
     DE / / AB ,
    ABF∽MEF .
     AB  BF .
    MEEF
     ME  4 .
     DM  DE  EM  1 .

    相关试卷

    2022-2023学年广东省广州中学九年级(上)期末数学试卷(含答案):

    这是一份2022-2023学年广东省广州中学九年级(上)期末数学试卷(含答案),共27页。试卷主要包含了细心选一选,耐心填一填,用心答一答等内容,欢迎下载使用。

    2022-2023学年广东省广州市增城区九年级(上)期末数学试卷(含答案):

    这是一份2022-2023学年广东省广州市增城区九年级(上)期末数学试卷(含答案),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年广东省广州市天河区九年级(上)期末数学试卷(含答案):

    这是一份2022-2023学年广东省广州市天河区九年级(上)期末数学试卷(含答案),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map