所属成套资源:人教版五年级数学上册单元+期中期末测试卷(含答案)
人教版五年级上册数学期末测试卷(三)(原卷+精品解析)
展开
这是一份人教版五年级上册数学期末测试卷(三)(原卷+精品解析),文件包含人教版五年级上册数学期末测试卷原卷docx、人教版五年级上册数学期末测试卷精品解析docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
一、选择题
1.7.8×99+7.8=7.8×(99+1),运用了( )。
A.加法结合律B.乘法结合律C.乘法分配律
【答案】C
【分析】7.8×99+7.8表示99个7.8和1个7.8相加,也就是(99+1)个7.8相加,是乘法分配律的应用。据此解答。
【详解】7.8×99+7.8=7.8×(99+1),运用了乘法分配律。
故答案为:C
【点睛】熟练运用乘法分配律是解答本题的关键。
2.如果点A用数对表示是(2,1),点B用数对表示是(4,1),点C用数对表示是(4,5),那么三角形ABC一定是( )。
A.直角三角形B.钝角三角形C.锐角三角形
【答案】A
【分析】根据用数对表示位置的方法:数对的第一个数字表示列,第二个数字表示行。
点A用数对表示是(2,1),点B用数对表示是(4,1),则点A、点B在同一行;
点B用数对表示是(4,1),点C用数对表示是(4,5),则点B、点C在同一列;
可得AB垂直于BC,即三角形ABC是直角三角形。
【详解】如图:
三角形ABC一定是直角三角形。
故答案为:A
【点睛】本题考查数对与位置的知识,明确同一列则数对的第一个数字相同,同一行则数对的第二个数字相同。
3.做一套童装用布2.2m,60m布最多可以做这种童装的套数是( )。
A.28套B.27套C.26套
【答案】B
【分析】已知做一套童装用布2.2m,求60m布最多可以做多少套这种童装,就是求60里面有几个2.2,用除法计算,得数采用“去尾法”取整数。
【详解】60÷2.2≈27(套)
最多可以做这种童装的套数是27套。
故答案为:B
4.与9×1.75-1.75计算结果相等的式子是( )。
A.(9-2)×1.75B.(9-1)×1.75C.9×( 1.75-1.75)
【答案】B
【分析】根据乘法分配律:a×b-a×c=a×(b-c),据此作答即可。
【详解】9×1.75-1.75
= 9×1.75-1.75×1
=(9-1)×1.75
=8×1.75
=14
故答案为:B
【点睛】本题考查乘法分配律,熟练运用乘法运算定律是解题的关键。
5.下面计算结果小于1的是( )。
A.1.8÷12B.18÷12C.1.8÷1.2
【答案】A
【分析】在除法中,如果被除数小于除数,则商小于1;如果被除数大于除数,则商大于1。据此解答。
【详解】A.1.8÷12,1.8<12,由分析可知,商小于1,选项符合题意;
B.18÷12,18>12,由分析可知,商大于1,选项不符合题意;
C.1.8÷1.2,1.8>1.2,由分析可知,商大于1,选项不符合题意。
故答案为:A
6.一个盒子里放了15个球,其中有5个红球,9个黑球,1个黄球,从盒子里任意摸出一个球,摸出( )球的可能性最大,摸出( )球的可能性最小。
A.黄;黑B.黑;黄C.红;黄
【答案】B
【分析】可能性的大小与球数量的多少有关,哪种颜色的球的数量多,则被摸出的可能性就大,反之就小。据此选择即可。
【详解】因为9>5>1
则从盒子里任意摸出一个球,摸出黑球的可能性最大,摸出黄球的可能性最小。
故答案为:B
【点睛】本题考查可能性,明确可能性的大小与球数量的多少有关是解题的关键。
7.下列方程中,与x÷1.2=6的解相同的方程是( )。
A.0.3x=21.6B.x÷4=1.2C.x-6=1.2
【答案】C
【分析】分别解出题干和各个选项中x的解,找出相同的解即可。
【详解】x÷1.2=6
x=1.2×6
x=7.2
A.0.3x=21.6
x=21.6÷0.3
x=72
B.x÷4=1.2
x=1.2×4
x=4.8
C.x-6=1.2
x=6+1.2
x=7.2
由此可知题干中的解与C选项的解相同。
故答案为:C
8.工地上有一堆钢管,已知最上面一层只有1根,最下面一层12根,而且下一层总比上一层多1根,这堆钢管共有( )根。
A.72B.78C.156
【答案】B
【分析】根据梯形面积公式,先确定层数,(最上层根数+最下层根数)×层数÷2=总根数,列式计算即可。
【详解】(1+12)×12÷2
=13×12÷2
=78(根)
这堆钢管共有78根。
故答案为:B
9.一个平行四边形的高不变,如果底扩大到原来的10倍,那么它的面积( )。
A.扩大到原来的10倍B.扩大到原来的20倍C.缩小为原来的
【答案】A
【分析】根据平行四边形的面积公式:S=ah,再结合积的变化规律,一个因数不变,另一个因数乘10,则积也应乘10,据此解答即可。
【详解】由分析可知:
一个平行四边形的高不变,如果底扩大到原来的10倍,那么它的面积也应扩大到原来的10倍。
故答案为:A
10.王老师住的单元楼,每上一层要走18个台阶,从一楼到家要走108个台阶,王老师家住( )层。
A.9B.8C.7
【答案】C
【分析】观察题目可知,楼梯的间隔数=楼梯的总台阶数÷每层间隔台阶数,用108÷18即可求出楼梯的间隔数,然后根据楼层层数=楼梯的间隔数+1,用108÷18+1即可求出王老师住几层。
【详解】108÷18+1
=6+1
=7(层)
即王老师家住7层。
故答案为:C
【点睛】本题考查了植树问题,关键是明确楼层数和楼梯的间隔数两者之间的关系。
二、填空题
11.世界上飞行最慢的鸟是丘鹬,一只丘鹬0.6小时飞行4.8千米,它每小时飞行( )千米,飞行1千米需要( )小时。
【答案】 8 0.125
【分析】每小时飞的千米数=飞行的千米数÷时间,1千米飞行的时间=一共的需要的时间÷飞行的千米数。
【详解】4.8÷0.6=8(千米)
0.6÷4.8=0.125(小时)
它每小时飞行8千米,飞行1千米需要0.125小时。
12.茸茸在教室的位置是第3行第4列,用数对表示是( ),悦悦坐在茸茸的右边,悦悦的座位用数对表示为( )。
【答案】 (4,3) (5,3)
【分析】用数对表示物体的位置时,先说列,后说行,表示形式为(列数,行数)。
【详解】根据用数对表示物体位置的方法可知:茸茸在教室的位置是第3行第4列,即第4列、第3行的交点处,用数对表示是(4,3);
悦悦坐在茸茸的右边,4+1=5,即悦悦在第5列、第3行的交点处,所以悦悦的座位用数对表示为(5,3)。
【点睛】在同一平面图上,数对第一个数相同的物体位于同一列,数对第二个数相同的物体位于同一行。
13.两个工程队同时开凿一条425m长的隧道,各从一端相向施工,17天打通,甲队每天开凿11.8m,乙队每天开凿( )m。
【答案】13.2
【分析】由题意可知,设乙队每天开凿xm,根据甲队开凿的长度+乙队开凿的长度=425,据此列方程解答即可。
【详解】解:设乙队每天开凿xm。
11.8×17+17x=425
200.6+17x=425
200.6+17x-200.6=425-200.6
17x=224.4
17x÷17=224.4÷17
x=13.2
则乙队每天开凿13.2m。
【点睛】本题考查用方程解决实际问题,明确等量关系是解题的关键。
14.一个不透明盒子里放有10个红球,7个黄球,任意摸出1个球,有( )种可能,摸到( )球的可能性小。
【答案】 2 黄
【分析】根据题目可知,盒子里就两种颜色的球,任意摸出一个球,可能是红球,可能是黄球,有两种情况;由于红球的个数远比黄球个数要多,所以摸到红球的可能性大,摸到黄球可能性小,由此即可解答。
【详解】根据分析可知,任意摸出1个球,有2种可能,摸到黄球的可能性小。
15.一个梯形的下底是6厘米,比上底的2倍少2厘米,是高的3倍,这个梯形的面积是( )平方厘米。
【答案】10
【分析】下底加上2厘米刚好是上底的2倍,根据已知一个数的几倍是多少,求这个数用除法,分别求出上底和高,根据梯形面积=(上底+下底)×高÷2,列式计算即可。
【详解】(6+2)÷2
=8÷2
=4(厘米)
6÷3=2(厘米)
(4+6)×2÷2
=10×2÷2
=10(平方厘米)
这个梯形的面积是10平方厘米。
16.把3.3t水泥装袋,每个袋子最多能装0.08t水泥,装完这些水泥至少需要( )个这样的袋子。
【答案】42
【分析】求装完3.3t水泥至少需要多少个能装0.08t水泥的袋子,也就是求3.3里面有几个0.08,用除法计算,得数采用“进一法”取整数。
【详解】3.3÷0.08≈42(个)
装完这些水泥至少需要42个这样的袋子。
【点睛】本题考查小数除法的意义及应用,注意计算结果要结合生活实际,采用“进一法”取近似数。
17.张阿姨带了100元钱去买肉,肉重3.9千克,价格是每千克24.8元。她带的钱够吗?( )
【答案】够
【分析】数量×单价=总价,据此求出3.9千克肉的总价,从而判断100元够不够。
【详解】24.8×3.9=96.72(元)
100>96.72
所以,她带的钱够。
18.李芳有m元钱,买书用去52元,还剩( )元。当m等于100时李芳还剩( )元。
【答案】 m-52 48
【分析】根据题意可知,李芳原来的钱数-买书的钱数=剩余的钱数,所以剩下(m-52)元,把m=100代入式子计算即可。
【详解】李芳有m元钱,买书用去52元,还剩(m-52)元。
当m=100时,
m-52
=100-52
=48(元)
当m等于100时李芳还剩48元。
19.1.56×0.9的积是( )位小数,积是( ),保留一位小数约是( )。
【答案】 3 1.404 1.4
【分析】1.56×0.9的积可看两个乘数的小数位数,前一个乘数有2位小数,后一个乘数有1位小数,则积有3位小数。两个小数相乘,将小数看作整数乘法计算,得到的积再右开始点3位小数,即可得出积;保留一位小数需要看百分位上的数,根据“四舍五入”法则得出答案。
【详解】,积是3位小数,积是1.404,保留一位小数约是1.4。
【点睛】本题主要考查的是小数乘法,解题的关键是熟练掌握小数乘法运算法则,进而得出答案。
20.10÷11的商用循环小数的简便形式表示是( ),精确到百分位是( )。
【答案】 0.91
【分析】循环小数的简便形式表示方法是在循环节的首位和末位点上循环点。精确到百分位,就要看到千分位,千分位大于或等于5就要进一位,小于5就舍去。
【详解】10÷11的商用循环小数的简便形式表示是,精确到百分位是0.91。
三、判断题
21.把2.6千克的饮料分装在容量为0.4千克的小瓶子里,至少需要6个小瓶子。( )
【答案】×
【分析】用饮料的总质量除以每个小瓶子的容量,利用小数除法的计算,求出小瓶子的数量,对于商的结果,要根据实际情况,采取“进一法”。
【详解】2.6÷0.4=6.5(个)≈7(个)
根据实际情况,小数点后面的数还需要一个瓶子来装,所以至少需要6+1=7(个)小瓶子。
故答案为:×
【点睛】此题的解题关键是针对商的近似值,根据实际情况,合理的使用进一法,得到最终的结果。
22.1.8×3.2+1.8×6.8=1.8×(3.2+6.8)应用了乘法结合律。( )
【答案】×
【分析】乘法分配律:两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加,结果不变;乘法结合律:三个数相乘,先把前两个数相乘,再乘第三个数或者先把后两个数相乘,再和第一个数相乘,它们的积不变。
【详解】1.8×3.2+1.8×6.8
=1.8×(3.2+6.8)
=1.8×10
=18
1.8×3.2+1.8×6.8=1.8×(3.2+6.8)应用了乘法分配律。
故答案为:×
【点睛】本题考查了小数乘法的运算定律,明确整数运算定律在小数中同样适用。
23.在同一幅图上,(4,5)(5,4)表示的是同一个位置。( )
【答案】×
【分析】数对中的第一个数表示列数,第二个数表示行数,据此解题。
【详解】(4,5)表示第4列第5行,(5,4)表示第5列第4行。所以,在同一幅图上,(4,5)(5,4)表示的不是同一个位置。
故答案为:×
24.等式20a-8=32中不含有,所以它不是方程。( )
【答案】×
【分析】含有未知数的等式叫做方程;据此判断。
【详解】等式20a-8=32中含有未知数a,所以它是方程。
原题说法错误。
故答案为:×
【点睛】本题考查方程的意义,明确未知数可以用任意字母表示。
25.两个等底等高的平行四边形,面积相同但形状不一定相同。( )
【答案】√
【分析】根据平行四边形的面积公式:平行四边形的面积=底×高,可知两个等底等高的平行四边形,面积相同但形状不一定相同,如下图:
【详解】根据分析可知,两个等底等高的平行四边形,面积相同但形状不一定相同。此说法正确。
故答案为:√
【点睛】本题考查了平行四边形的认识以及面积公式的应用。
四、计算题
26.直接写得数。
0.3×0.2= 2.4×10= 4.2÷0.7= 3.6÷12= 1.2×5=
9.1÷0.7= 15×0.6= 0.78÷3= 0.25×4= 100×7.4=
【答案】0.06;24;6;0.3;6
13;9;0.26;1;740
【解析】略
27.列竖式计算下面各题。
22.78÷3.4= 1.58×2.5= 6.93÷3.3= 0.56×0.06=
【答案】6.7;3.95;2.1;0.0336
【分析】小数除法法则:先移动除数的小数点,使它变成整数。除数的小数点向右移动几位,被除数的小数点也向右移动相同的位数(位数不够的补“0”),然后按照除数是整数的除法进行计算。
小数乘法法则:(1)按整数乘法的法则先求出积;(2)看因数中一个有几位小数,就从积的右边起数出几位点上小数点。
【详解】22.78÷3.4=6.7 1.58×2.5=3.95 6.93÷3.3=2.1 0.56×0.06=0.0336
28.解方程。
15(x+0.6)=18 7x÷3=8.19 4x-0.5x=14 8.8-x=3.9
【答案】x=0.6;x=3.51;x=4;x=4.9
【分析】15(x+0.6)=18,把括号里面的看作一个整体,根据等式的性质1和2,方程两边同时除以15,再把方程两边同时减0.6即可;
7x÷3=8.19,根据等式的性质2,先把方程两边同时乘3,再把方程两边同时除以7即可;
4x-0.5x=14,化简为3.5x=14,根据等式的性质2,把方程两边同时除以3.5即可;
8.8-x=3.9,根据等式的性质1,先把方程两边同时加x,再把方程两边同时减3.9即可。
【详解】15(x+0.6)=18
解:15(x+0.6)÷15=18÷15
x+0.6=1.2
x+0.6-0.6=1.2-0.6
x=0.6
7x÷3=8.19
解:7x÷3×3=8.19×3
7x=24.57
7x÷7=24.57÷7
x=3.51
4x-0.5x=14
解:3.5x=14
3.5x÷3.5=14÷3.5
x=4
8.8-x=3.9
解:8.8-x+x=3.9+x
3.9+x=8.8
3.4+x-3.9=8.8-3.9
x=4.9
29.用你喜欢的方法计算。
【答案】8.6;0.85;0.175
【分析】28.7÷7+4.5,先计算除法,再计算加法;
0.85×6.5-0.85×5.5,根据乘法分配律,原式化为:0.85×(6.5-5.5),再进行计算;
0.175×0.25×4,根据乘法结合律,原式化为:0.175×(0.25×4),再进行计算。
【详解】28.7÷7+4.5
=4.1+4.5
=8.6
0.85×6.5-0.85×5.5
=0.85×(6.5-5.5)
=0.85×1
=0.85
0.175×0.25×4
=0.175×(0.25×4)
=0.175×1
=0.175
30.计算图形的面积。
【答案】84cm2;2544m2
【分析】平行四边形面积=底×高;组合图形的面积=梯形面积+长方形面积,梯形面积=(上底+下底)×高÷2,长方形面积=长×宽,据此列式计算。
【详解】8×10.5=84(cm2)
(24+60)×40÷2+36×24
=84×40÷2+864
=1680+864
=2544(m2)
平行四边形面积是84cm2,组合图形的面积是2544m2。
五、解答题
31.生产一种小玩具,原来每个小玩具的成本是8.4元,由于改进技术后,每个小玩具可节省成本0.4元。原来生产600个小玩具的成本,现在可以生产多少个小玩具?
【答案】630个
【分析】已知原来每个小玩具的成本是8.4元,生产600个小玩具,根据“总价=单价×数量”求出原来生产600个小玩具的成本;
由于改进技术,现在每个小玩具可节省成本0.4元,则现在每个小玩具的成本是(8.4-0.4)元;根据“数量=总价÷单价”,即可求出现在生产小玩具的个数。
【详解】8.4×600=5040(元)
8.4-0.4=8(元)
5040÷8=630(个)
答:现在可以生产630个小玩具。
32.今年我县申报省级卫生城,全县人民积极参加到净化环境整治活动中,垃圾中转站每天大约要清理21.5吨垃圾,一辆垃圾车一次可运走1.5吨垃圾。要一次将这些垃圾拉走,至少需要配备多少辆垃圾车?
【答案】15辆
【分析】最后无论剩下多少吨垃圾,只要不够装一辆车,也要准备一辆车,用垃圾的总重量÷一辆垃圾车运走垃圾的重量,结果用“进一法”解答。
【详解】21.5÷1.5≈15(辆)
答:至少需要配备15辆垃圾车。
33.甲、乙两幢大楼的楼门在一条直线上,相距300米。小丽和小明两人分别从甲、乙两幢大楼门口同时向相反的方向走去,7分钟后两人相距860米。小丽平均每分钟走37米,小明平均每分钟走多少米?(用方程解)
【答案】43米
【分析】根据“速度×时间=路程”可得出等量关系:小丽的速度×时间+小明的速度×时间+甲、乙两幢大楼相距的距离=7分钟后小丽和小明相距的距离,据此列出方程,并求解。
【详解】解:设小明平均每分钟走米。
37×7+7+300=860
259+7+300=860
559+7=860
559+7-559=860-559
7=301
7÷7=301÷7
=43
答:小明平均每分钟走43米。
34.一个梯形,如果上底减少4厘米,就变成了三角形,面积比原来的梯形减少5平方厘米;如果上底增加6厘米,就变成了平行四边形。原来的梯形面积是多少平方厘米?
【答案】17.5平方厘米
【分析】如果梯形上底减少4厘米,就变成了三角形,说明梯形的上底是4厘米,且减少的图形是一个三角形,已知面积比原来的梯形减少5平方厘米,根据三角形的面积=底×高÷2,用5×2÷4即可求出三角形的高,也就是梯形的高;如果上底增加6厘米,就变成了平行四边形,说明下底比上底多了6厘米,所以下底是(4+6)厘米,最后根据梯形的面积=(上底+下底)×高÷2,代入数据解答即可。
【详解】5×2÷4=2.5(厘米)
4+6=10(厘米)
(4+10)×2.5÷2
=14×2.5÷2
=17.5(平方厘米)
答:原来的梯形面积是17.5平方厘米。
35.一条路长1000米,在路的一旁安装路灯,每隔20米安装一盏(一端安另一端不安),一共需要准备多少盏路灯?
【答案】50盏
【分析】根据植树问题的解题方法,一端植一端不植,棵数=段数,路的长度÷间距=路灯数量,据此列式解答。
【详解】1000÷20=50(盏)
答:一共需要准备50盏路灯。
相关试卷
这是一份北师大版五年级上册数学期末测试卷(一)(原卷+精品解析),文件包含北师大版五年级上册数学期末测试卷word原卷docx、北师大版五年级上册数学期末测试卷精品解析docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份北师大版五年级上册数学期末测试卷(三)(原卷+精品解析),文件包含北师大版五年级上册数学期末测试卷原卷docx、北师大版五年级上册数学期末测试卷精品解析docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份北师大版五年级上册数学期末测试卷(二)(原卷+精品解析),文件包含北师大版五年级上册数学期末测试卷原卷docx、北师大版五年级上册数学期末测试卷精品解析docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。