2024-2025学年甘肃省多校高一(上)第二次月考数学试卷(12月份)(含答案)
展开
这是一份2024-2025学年甘肃省多校高一(上)第二次月考数学试卷(12月份)(含答案),共6页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
1.下列关系正确的是( )
A. 0∈N∗B. 52∈ZC. − 2∈QD. −7.8∈R
2.已知幂函数y=f(x)的图象过点(2, 2),则f(9)=( )
A. 3B. 13C. 9D. 19
3.函数f(x)=1 2x+4+ 2−x的定义域为( )
A. (−2,2)⋃(2,+∞)B. [2,+∞)
C. (−2,2]D. [−2,2]
4.已知函数f(x)满足f(2x)=4x2+2x,则( )
A. f(x)=2x2+xB. f(x)=x2+2xC. f(x)=2x2+2xD. f(x)=x2+x
5.已知正数a,b满足1a+2b=1,则2a+b+1的最小值为( )
A. 9B. 8C. 7D. 10
6.定义集合运算:A−B={x|x∈A且x∉B},若集合A={x∈Z|−2 bB. ab>baC. a2>abD. b3>a2b
10.下列判断正确的有( )
A. (57)−1.4>(57)−2.1B. 20.3π 3D. 0.70.86,则a+bx1≥0时,(x2−x1)[f(x2)−f(x1)]>0.则不等式f(x)x0,b>0,且a+2b=4.
(1)求ab的最大值;
(2)求a2+2b2的最小值.
17.(本小题12分)
已知指数函数f(x)=(3a2−10a+4)ax在其定义域内单调递增.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(2x)−4f(x)−3,当x∈[0,2]时,求函数g(x)的值域.
18.(本小题12分)
已知函数f(x)=lg14(6−x)−lg14(6+x).
(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)的单调性;
(3)若f(2k+1)0,a+2b=4≥2 2ab,得ab≤2,
当a=2b,即a=2,b=1时,等号成立,
所以ab的最大值为2;
(2)a2+2b2=(4−2b)2+2b2=6b2−16b+16,
=6(b−43)2+163,
根据二次函数的性质可知,当b=43,a=43时,a2+2b2取得最小值163.
17.解:(1)∵f(x)是指数函数,
∴3a2−10a+4=1,解得a=3或a=13,
又∵f(x)在其定义域内单调递增,所以a=3,
∴f(x)=3x;
(2)g(x)=32x−4⋅3x−3=(3x)2−4(3x)−3,
∵x∈[0,2],
∴3x∈[1,9],令t=3x,t∈[1,9],
∴g(t)=t2−4t−3,t∈[1,9],
∴g(t)min=g(2)=−7,
g(t)max=g(9)=92−4×9−3=42,
∴g(x)的值域为[−7,42].
18.解:(1)函数的定义域为6−x>06+x>0,解得−6
相关试卷
这是一份河南省多校2024-2025学年高二(上)期中数学试卷(含答案),共9页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年甘肃省张掖市某校高一(上)12月月考数学试卷(解析版),共10页。试卷主要包含了单选题,多项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024~2025学年湖南省多校联考高一(上)期中数学试卷(含答案),共7页。