年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2025高考数学一轮复习-第2章-函数-第1讲 函数的概念及其表示【课件】

    2025高考数学一轮复习-第2章-函数-第1讲 函数的概念及其表示【课件】第1页
    2025高考数学一轮复习-第2章-函数-第1讲 函数的概念及其表示【课件】第2页
    2025高考数学一轮复习-第2章-函数-第1讲 函数的概念及其表示【课件】第3页
    2025高考数学一轮复习-第2章-函数-第1讲 函数的概念及其表示【课件】第4页
    2025高考数学一轮复习-第2章-函数-第1讲 函数的概念及其表示【课件】第5页
    2025高考数学一轮复习-第2章-函数-第1讲 函数的概念及其表示【课件】第6页
    2025高考数学一轮复习-第2章-函数-第1讲 函数的概念及其表示【课件】第7页
    2025高考数学一轮复习-第2章-函数-第1讲 函数的概念及其表示【课件】第8页
    还剩50页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025高考数学一轮复习-第2章-函数-第1讲 函数的概念及其表示【课件】

    展开

    这是一份2025高考数学一轮复习-第2章-函数-第1讲 函数的概念及其表示【课件】,共58页。PPT课件主要包含了教材再现四基诊断,函数的概念,实数集,任意一个数x,定义域,对应关系,解析法,x2-1x≥0,重点串讲能力提升,求函数的定义域等内容,欢迎下载使用。
    课程标准 1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用.了解构成函数的要素,能求简单函数的定义域. 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用. 3.通过具体实例,了解简单的分段函数,并能简单应用.
    2.函数的三要素(1)函数的三要素:__________________________.(2)如果两个函数的_______相同,并且_________完全一致,则这两个函数为同一个函数.3.函数的表示法表示函数的常用方法有_________、图象法和列表法.
    定义域、对应关系、值域
    4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的______.
    1.直线x=a(a是常数)与函数y=f(x)的图象至多有1个交点.2.注意以下几个特殊函数的定义域:(1)分式型函数,分母不为零的实数集合.(2)偶次方根型函数,被开方式非负的实数集合.(3)f(x)为对数式时,函数的定义域是真数为正数、底数为正数且不为1的实数集合.(4)若f(x)=x0,则定义域为{x|x≠0}.
    1.判断下列结论是否正确(正确的在括号内打“√”,错误的在括号内打“×”).(1)函数y=1与y=x0是同一个函数.(  )(2)对于函数f:A→B,其值域是集合B.(  )(3)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的函数.(  )(4)若两个函数的定义域与值域分别相同,则这两个函数是同一个函数.(  )
    解析:(1)错误.函数y=1的定义域为R,而y=x0的定义域为{x|x≠0},其定义域不同,故不是同一函数.(2)错误.值域可以为B的子集.(3)错误.集合A中的元素0在集合B中无元素与之对应.(4)错误.只有两个函数的定义域、对应关系分别相同时,这两个函数才是同一个函数.
    2.如图,可以表示函数f(x)的图象的是(  )
    解析:根据函数的定义,对于一个x,只能有唯一的y与之对应,只有D满足要求.
    例1 (1)(2024·山东潍坊模拟)存在函数f(x)满足:对任意x∈R,都有(  )A.f(|x|)=x3   B.f(sin x)=x2C.f(x2+2x)=|x| D.f(|x|)=x2+1
    [解析] (1)对于A,当x=1时,f(|1|)=f(1)=1;当x=-1时,f(|-1|)=f(1)=-1,不符合函数定义,A错误.对于B,令x=0,则f(sin x)=f(0)=0;令x=π,则f(sin π)=f(0)=π2,不符合函数定义,B错误.对于C,令x=0,则f(0)=0;令x=-2,则f(0)=f((-2)2+2(-2))=2,不符合函数定义,C错误.对于D,f(|x|)=x2+1=|x|2+1,x∈R,则|x|≥0,则存在x≥0时,f(x)=x2+1,符合函数定义,即存在函数f(x)=x2+1(x≥0)满足:对任意x∈R,都有f(|x|)=x2+1,D正确.(2)同一个函数满足:①定义域相同,②对应关系相同,只有A,C满足.
    1.函数的定义要求非空数集A中的任何一个元素在非空数集B中有且只有一个元素与之对应,即可以“多对一”,不能“一对多”,而B中有可能存在与A中元素不对应的元素.2.构成函数的三要素中,若定义域和对应关系相同,则值域一定相同.
    角度1 给定解析式的函数的定义域
    求给定解析式的函数定义域的方法(1)求给定解析式的函数的定义域,其实质就是以函数解析式中所含式子(运算)有意义为准则,列出不等式或不等式组求解.(2)若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集.(3)对于实际问题,定义域应使实际问题有意义.
    角度2 抽象函数的定义域
    求抽象函数定义域的方法(1)若已知函数f(x)的定义域为[a,b],则复合函数f[g(x)]的定义域可由不等式a≤g(x)≤b求出.(2)若已知函数f[g(x)]的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]上的值域.
    [解] (1)(换元法):设1-sinx=t,t∈[0,2],则sin x=1-t.∵f(1-sin x)=cs2x=1-sin2x,∴f(t)=1-(1-t)2=2t-t2,t∈[0,2],即f(x)=2x-x2,x∈[0,2].
    (4)(方程组法):∵2f(x)+f(-x)=3x,①∴将x用-x替换,得2f(-x)+f(x)=-3x,②由①②解得f(x)=3x.
    函数解析式的求法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围.
    2.写出一个满足f(x+y)=f(x)+f(y)+2xy的函数解析式为____________________.解析:在f(x+y)=f(x)+f(y)+2xy中,令x=y=0,解得f(0)=0,令y=-x,得f(x-x)=f(x)+f(-x)-2x2,故f(x)+f(-x)=2x2,不妨设f(x)=x2,满足要求.
    f(x)=x2(答案不唯一)
    根据分段函数的解析式求函数值,首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.
    f(x)=-ax+1在(-∞,a)上单调递减,所以f(x)>1-a2.f(x)=(x-2)2在[a,+∞)上的最小值大于或等于0,而1-a2<0,所以函数f(x)在R上不存在最小值.综上,a的取值范围为[0,1],a的最大值为1.
    已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.提醒 当分段函数的自变量范围不确定时,应分类讨论.

    相关课件

    2025届高中数学一轮复习课件:第三章 第1讲函数的概念及其表示:

    这是一份2025届高中数学一轮复习课件:第三章 第1讲函数的概念及其表示,共60页。PPT课件主要包含了限时跟踪检测等内容,欢迎下载使用。

    07 第2章 第1课时 函数的概念及其表示-2025年高考数学一轮复习课件:

    这是一份07 第2章 第1课时 函数的概念及其表示-2025年高考数学一轮复习课件,共31页。PPT课件主要包含了考试要求,链接教材夯基固本,典例精研核心考点,课时分层作业六等内容,欢迎下载使用。

    新高考数学一轮复习课件第2章函数导数及其应用第1讲 函数的概念及其表示(含解析):

    这是一份新高考数学一轮复习课件第2章函数导数及其应用第1讲 函数的概念及其表示(含解析),共43页。PPT课件主要包含了答案B,答案0+∞,答案C,x+1,答案3,答案3x,答案D,题后反思,类讨论等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map