2020~2024【新高考I卷】数学命题规律分析暨2025年命题方向预测
展开
这是一份2020~2024【新高考I卷】数学命题规律分析暨2025年命题方向预测,共130页。试卷主要包含了集合与简易逻辑小题,不等式小题,立体几何小题,排列组合二项式定理等内容,欢迎下载使用。
目录
TOC \ "1-1" \h \u \l "_Tc26128" 2020-2024届五年新高考I卷命题规律分析暨2025年命题方向预测 PAGEREF _Tc26128 \h 1
\l "_Tc21689" 2025年全国各省份语数外试卷预估 PAGEREF _Tc21689 \h 1
\l "_Tc27937" 一、集合与简易逻辑小题: PAGEREF _Tc27937 \h 2
\l "_Tc23790" 二、不等式小题: PAGEREF _Tc23790 \h 5
\l "_Tc28649" 三、 复数小题 PAGEREF _Tc28649 \h 5
\l "_Tc10113" 四、 平面向量小题 PAGEREF _Tc10113 \h 7
\l "_Tc10253" 五、三角函数小题 PAGEREF _Tc10253 \h 9
\l "_Tc1438" 六、立体几何小题: PAGEREF _Tc1438 \h 15
\l "_Tc4028" 七、数列小题 PAGEREF _Tc4028 \h 24
\l "_Tc1955" 九、概率统计小题 PAGEREF _Tc1955 \h 28
\l "_Tc8477" 十、解析几何小题 PAGEREF _Tc8477 \h 33
\l "_Tc17745" 十一、函数与导数小题 PAGEREF _Tc17745 \h 46
\l "_Tc27199" 十二、三角函数与解三角形 PAGEREF _Tc27199 \h 59
\l "_Tc23686" 十三、数列 PAGEREF _Tc23686 \h 75
\l "_Tc24937" 十四、概率统计 PAGEREF _Tc24937 \h 84
\l "_Tc714" 十五、立体几何 PAGEREF _Tc714 \h 89
\l "_Tc1272" 十六、函数与导数 PAGEREF _Tc1272 \h 100
\l "_Tc10288" 十七、解析几何 PAGEREF _Tc10288 \h 115
2020-2024届五年新高考I卷命题规律分析暨2025年命题方向预测
MST老唐说题&为学溪教育 李弦裴
话说天下大势,合久必分,分久必合,中国高考也是如此。2000年,教育部决定实施分省命题。十多年后,由分到合。
2024年,除了保留北京、天津、上海、台湾实行全科自主命题外,全国除西藏新疆外全部使用语数外全国卷+理化生史地政自主命题。
2025年全国各省份语数外试卷预估
研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性。每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定。掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂。基于此,笔者潜心研究近5年全国新高考I卷和高考数学评价体系,精心分类汇总了近5年全国新高考I卷。所有题型,为了便于读者使用,所有题目分类(共21类)列于表格之中,按年份排序。
2024年新高考数学阅卷情况
(1)最后一题满分的,浙江30人,江苏12人,河南0人,安徽1人,江西1人;
(2)江西最后一题仅有1人全对,江西数学全省平均分:42.45分;
(3)河南最后一题没有人拿满分,得16分的只有8人;
(4)衡水中学最后一题接近满分的有32人,其中整个试卷最高分148分
2024年起高考数学难度增大是必然事件。各位考生要重点注意,勤奋努力。
本文档是第1次修订,为了适应不同基础的考生使用,特别新增了选择题和填空题的解法,解法大都体现“小题小做”。
一、集合与简易逻辑小题
1.集合小题:5年6考,每年1题,都是交并补子运算为主,多与不等式交汇,新定义运算也有较小的可能,但是难度较低;基本上是每年的送分题,相信命题小组对集合题进行大幅变动的决心不大。
2.简易逻辑小题:5年0考.这个考点包含的小考点较多,并且容易与函数,不等式、数列、三角函数、立体几何交汇,热点就是“充要条件”;难点:否定与否命题;冷点:全称与特称,思想:逆否.要注意,这类题可以分为两大类,一类只涉及形式的变换,比较简单,另一类涉及命题真假判断,比较复杂.今年本部分出题概率均较低,要注意充要条件除去和三角、数列结合之外的题型。
二、不等式小题
5年1考,基本不等式难度较旧高考有所加大,除了2020年考察之外,2021-2024均未考查,2025恰好是第五年了,是不是可以考一下了?考生可以注意一下柯西不等式、权方和不等式、双变量、齐次等知识点
复数小题
5年5考,每年1题,以四则运算为主,偶尔与其他知识交汇,难度较小.一般涉及考查概念:实部、虚部、共轭复数、复数的模、对应复平面的点坐标等.值得注意的事是,2023年四省联考和2024年九省联考,复数均有多选综合题,涉及到三角表示,高三考生不得不注意。
平面向量小题
5年5考,每年1题,向量题考的比较基本,突出向量的几何运算或代数运算,不侧重于与其它知识交汇,难度不大。极化恒等式、等数值线、奔驰定理在本板块不应作为重点准备,本身都不怎么考。目前也可能用空间向量的运算代替平面向量这个题的考点。
五、三角函数小题
5年9考,每年至少1题,有时2题或3题.题目难度较小,主要考察公式熟练运用,平移,由图像性质、化简求值、解三角形等问题(含应用题),基本属于“送分题”.考三角小题时,一般是一个考查三角恒等变形或三角函数的图象性质,而解答题一般考查解三角形。
六、立体几何小题
5年10考,平均每年2题,最少一年2024年只考了1题,最多一年考了3个题,目前立体几何在小题已经出了一些难题和压轴题了。考查内容有体积表面积的计算、交线长计算、空间向量的分析、应用题、内含内切问题,仅在2022年考查外接球问题了。新形势下,立体几何值得注意的是应用题、空间向量运算、交线长运算等。至于体积表面积这是基本要掌握的。
七、数列小题
5年3考,在小题不算热点。由于新形势是数列在解答题必出了,而且难度非常大。均衡各板块分值和区分度,这几年数列小题反而没怎么考。比较特别的是重视一下数列论中提到的一些题,具体见点题班演示。目前仅在2022年出现了压轴小题,而且是和应用题结合的。这个是平时备考很难注意到的。
八、排列组合二项式定理:
5年3考,排列组合出现较多,这一点很合理,因为排列组合可以在概率统计和分布列中考查.排列组合考题的难度不大,无需投入过多时间(无底洞),而且排列组合难题无数,只要处理好分配问题及掌握好分类讨论思想即可!二项式定理“通项问题”也不一定出现.
九、概率统计小题
5年7考,2020年的开局年考查的是新一个信息熵和随机变量的函数综合题,挺难的。概率统计板块考查的知识点可以很多,之前很多老师在备考上不太在意的点,如平均数标准差极差其实也可以考很难。独立事件、古典概型、正态分布、数学期望仍然值得注意。2024年大家都以为压轴倒数第二到解答题是概统,结果命题者不光没在解答题考概统,而且我个人估计把解答题改考的算期望放在了填空题里面。明年概统还会压轴吗?当大家都觉得不会考的时候,它就考了,高考命题向来是意料之外,情理之中。
十、解析几何小题
5年13考,每年至少2题!太稳定了!太重要了!全国卷注重考查基础知识和基本概念,综合一点的小题侧重考查圆锥曲线与直线位置关系,多数题目比较单一,一般一个容易的,一个较难的.重点是解析几何的定义、MST焦长焦比公式、解析几何方程、常考三角形模型、圆的弦长问题、抛物线性质综合、新定义曲线等,一部分题型不重复考查,极个别的重复考查(内在联系线下讲)。
十一、函数与导数小题
5年16考,可见其重要性!主要考查基本初等函数图象和性质,包括:定义域、最值、单调性、奇偶性、周期性、对称性、平移、导数、切线、零点、应用题、三次函数等,分段函数是重要载体!函数已经不是值得学生“恐惧”的了吧?近年比较大小难度较大,但我们内部8月下旬教研会分析因该板块不少方法用高数比较简单,所以已经确定比较大小弱化了,可能不用准备那么难的。要重视两类抽象函数问题,这类考点已经替代了W卡根这一个三角考点。今年函数导数小题估计会在抽象函数(两类)、切线界定、函数图像、函数性质求参、三次函数中出题。
十二、三角函数与解三角形
5年5考,重点考查正、余弦定理,小题中侧重于考查三角函数的图象和性质.大题难度不小。要重视以下重点知识:射影定理三板斧、倍角定理、面积周长最值理论、张角定理、角平分线定理、斯库顿定理、斯坦纳定理、斯特瓦尔特定理、余弦双用等
十三、数列
5年5考,数列解答题,难度加大了很多,基本回到了全国大纲卷时代,而且考查难度比之前更大,在新定义背景上,结合四省联考和九省联考,主要还是离散数学这本书考查要多一些。2020年开局年的题就不简单,第二问纯粹靠学生分析规律。再到2024年九省联考前我们团队明示了压轴题是北京卷风格的数列压轴和数论压轴。(见GA处的相关记录)2024年高考仍然为数列和数论结合方向的题。明年是不是该考集合论和数列结合的题了?
十四、概率统计
5年4考,概率统计解答题,难度加大了很多,模拟题基本和大学概率统计教材接轨,而且对考生的理解能力要求很高。热点主要还是K方、全概率公式等内容。
十五、立体几何
5年5考,立体几何重点还是二面角、线面角,动态问题。阅卷时关注的常常是建系是否给出了依据,是否参照答题格式。考生在2025届应该关注几何解法体系。
十六、函数与导数
5年5考,4年出了压轴,已经打破了必出压轴的情况。2020年朗博同构(唐鑫、张羊利、魏国浩老师推广)、2021双向极值点偏移、2022同构等比等差模型、2023隐零点(未出压轴,这是2015年全国卷试题改编)、2024年恒成立与端点效应,同构应该不会再考了,重点应该还是恒成立与端点效应(侧向于极值点辨析)。题型不固定,但重点还是《MST新思路导函数》此书上的内容。
十七、解析几何
5年5考,5年出了4次压轴。题型不固定,但重点还是《MST新思路圆锥曲线》此书上的内容。
新课标I卷
河北、江苏、浙江、安徽、福建、江西、山东、河南、湖北、湖南、广东、陕西
新课标II卷(经任老提及,这些省份涉及“边疆和民族地区”的可能会考新卷子,但个人估计体系从II卷延伸出来)
山西、辽宁、吉林、黑龙江、广西、海南、重庆、贵州、云南、甘肃、新疆、内蒙古、四川、西藏、青海、宁夏
自主命题
北京、天津、上海、台湾
年份
题目
2020
设集合A={x|1≤x≤3},B={x|20,b>0,且a+b=1,则( )
A.B.
C.D.
【答案】ABD
【难度】0.65
【分析】根据,结合基本不等式及二次函数知识进行求解.
【详解】对于A,,
当且仅当时,等号成立,故A正确;
对于B,,所以,故B正确;
对于C,,
当且仅当时,等号成立,故C不正确;
对于D,因为,
所以,当且仅当时,等号成立,故D正确;
故选:ABD
【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.
年份
题目
2020
( )
A.1B.−1
C.iD.−i
【答案】D
【难度】0.85
【分析】根据复数除法法则进行计算.
【详解】
故选:D
【点睛】本题考查复数除法,考查基本分析求解能力,属基础题.
2021
已知,则( )
A.B.C.D.
【答案】C
【难度】0.94
【分析】利用复数的乘法和共轭复数的定义可求得结果.
【详解】因为,故,故
故选:C.
2022
若,则( )
A.B.C.1D.2
【答案】D
【难度】0.85
【分析】利用复数的除法可求,从而可求.
【详解】由题设有,故,故,
故选:D
2023
已知,则( )
A.B.C.0D.1
【答案】A
【难度】0.85
【分析】根据复数的除法运算求出,再由共轭复数的概念得到,从而解出.
【详解】因为,所以,即.
故选:A.
2024
若,则( )
A.B.C.D.
【答案】C
【难度】0.94
【分析】由复数四则运算法则直接运算即可求解.
【详解】因为,所以.
故选:C.
年份
题目
2020
已知P是边长为2的正六边形ABCDEF内的一点,则 的取值范围是( )
A.B.
C.D.
【答案】A
【难度】0.85
【分析】首先根据题中所给的条件,结合正六边形的特征,得到在方向上的投影的取值范围是,利用向量数量积的定义式,求得结果.
【详解】
的模为2,根据正六边形的特征,
可以得到在方向上的投影的取值范围是,
结合向量数量积的定义式,
可知等于的模与在方向上的投影的乘积,
所以的取值范围是,
故选:A.
【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.
2021
已知为坐标原点,点,,,,则( )
A.B.
C.D.
【答案】AC
【难度】0.65
【分析】A、B写出,、,的坐标,利用坐标公式求模,即可判断正误;C、D根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.
【详解】A:,,所以,,故,正确;
B:,,所以,同理,故不一定相等,错误;
C:由题意得:,,正确;
D:由题意得:,
,故一般来说故错误;
故选:AC
2022
在中,点D在边AB上,.记,则( )
A.B.C.D.
【答案】B
【难度】0.85
【分析】根据几何条件以及平面向量的线性运算即可解出.
【详解】因为点D在边AB上,,所以,即,
所以.
故选:B.
2023
已知向量,若,则( )
A.B.
C.D.
【答案】D
【难度】0.85
【分析】根据向量的坐标运算求出,,再根据向量垂直的坐标表示即可求出.
【详解】因为,所以,,
由可得,,
即,整理得:.
故选:D.
2024
已知向量,若,则( )
A.B.C.1D.2
【答案】D
【难度】0.85
【分析】根据向量垂直的坐标运算可求的值.
【详解】因为,所以,
所以即,故,
故选:D.
年份
题目
2020
下图是函数y= sin(ωx+φ)的部分图像,则sin(ωx+φ)= ( )
A.B.C.D.
【答案】BC
【难度】0.65
【分析】首先利用周期确定的值,然后确定的值即可确定函数的解析式,最后利用诱导公式可得正确结果.
【详解】由函数图像可知:,则,所以不选A,
不妨令,
当时,,
解得:,
即函数的解析式为:
.
而
故选:BC.
【点睛】已知f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:
(1)由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.
(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.
2020
某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=,,EF=12 cm,DE=2 cm,A到直线DE和EF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为 cm2.
【答案】
【难度】0.65
【分析】利用求出圆弧所在圆的半径,结合扇形的面积公式求出扇形的面积,求出直角的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.
【详解】设,由题意,,所以,
因为,所以,
因为,所以,
因为与圆弧相切于点,所以,
即为等腰直角三角形;
在直角中,,,
因为,所以,
解得;
等腰直角的面积为;
扇形的面积,
所以阴影部分的面积为.
故答案为:.
【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.
2021
下列区间中,函数单调递增的区间是( )
A.B.C.D.
【答案】A
【难度】0.65
【分析】解不等式,利用赋值法可得出结论.
【详解】因为函数的单调递增区间为,
对于函数,由,
解得,
取,可得函数的一个单调递增区间为,
则,,A选项满足条件,B不满足条件;
取,可得函数的一个单调递增区间为,
且,,CD选项均不满足条件.
故选:A.
【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数.
2021
若,则( )
A.B.C.D.
【答案】C
【难度】0.65
【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果.
【详解】将式子进行齐次化处理得:
.
故选:C.
【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.
2022
记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若,且的图象关于点(3π2,2)中心对称,则f(π2)=( )
A.1B.C.D.3
【答案】A
【难度】0.65
【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.
【详解】由函数的最小正周期T满足,得,解得,
又因为函数图象关于点对称,所以,且,
所以,所以,,
所以.
故选:A
2023
已知,则( ).
A.B.C.D.
【答案】B
【难度】0.65
【分析】根据给定条件,利用和角、差角的正弦公式求出,再利用二倍角的余弦公式计算作答.
【详解】因为,而,因此,
则,
所以.
故选:B
【点睛】方法点睛:三角函数求值的类型及方法
(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但非特殊角与特殊角总有一定关系.解题时,要利用观察得到的关系,结合三角函数公式转化为特殊角的三角函数.
(2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.
(3)“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角,有时要压缩角的取值范围.
2023
已知函数在区间有且仅有3个零点,则的取值范围是 .
【答案】
【难度】0.65
【分析】令,得有3个根,从而结合余弦函数的图像性质即可得解.
【详解】因为,所以,
令,则有3个根,
令,则有3个根,其中,
结合余弦函数的图像性质可得,故,
故答案为:.
2024
已知,则( )
A.B.C.D.
【答案】A
【难度】0.85
【分析】根据两角和的余弦可求的关系,结合的值可求前者,故可求的值.
【详解】因为,所以,
而,所以,
故即,
从而,故,
故选:A.
2024
当时,曲线与的交点个数为( )
A.3B.4C.6D.8
【答案】C
【难度】0.65
【分析】画出两函数在上的图象,根据图象即可求解
【详解】因为函数的的最小正周期为,
函数的最小正周期为,
所以在上函数有三个周期的图象,
在坐标系中结合五点法画出两函数图象,如图所示:
由图可知,两函数图象有6个交点.
故选:C
年份
题目
2020
日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为( )
A.20°B.40°
C.50°D.90°
【答案】B
【难度】0.65
【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点处的纬度,计算出晷针与点处的水平面所成角.
【详解】画出截面图如下图所示,其中是赤道所在平面的截线;是点处的水平面的截线,依题意可知;是晷针所在直线.是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,
根据平面平行的性质定理可得可知、根据线面垂直的定义可得..
由于,所以,
由于,
所以,也即晷针与点处的水平面所成角为.
故选:B
【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.
2020
已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为 .
【答案】.
【难度】0.65
【分析】根据已知条件易得,侧面,可得侧面与球面的交线上的点到的距离为,可得侧面与球面的交线是扇形的弧,再根据弧长公式可求得结果.
【详解】如图:
取的中点为,的中点为,的中点为,
因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以,,
又四棱柱为直四棱柱,所以平面,所以,
因为,所以侧面,
设为侧面与球面的交线上的点,则,
因为球的半径为,,所以,
所以侧面与球面的交线上的点到的距离为,
因为,所以侧面与球面的交线是扇形的弧,
因为,所以,
所以根据弧长公式可得.
故答案为:.
【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.
2021
已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )
A.B.C.D.
【答案】B
【难度】0.85
【分析】设圆锥的母线长为,根据圆锥底面圆的周长等于扇形的弧长可求得的值,即为所求.
【详解】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得.
故选:B.
2021
在正三棱柱中,,点满足BP=λBC+μBB1,其中,,则( )
A.当时,的周长为定值
B.当时,三棱锥的体积为定值
C.当时,有且仅有一个点,使得
D.当时,有且仅有一个点,使得平面
【答案】BD
【难度】0.15
【分析】对于A,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;
对于B,将点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;
对于C,考虑借助向量的平移将点轨迹确定,进而考虑建立合适的直角坐标系来求解点的个数;
对于D,考虑借助向量的平移将点轨迹确定,进而考虑建立合适的直角坐标系来求解点的个数.
【详解】
易知,点在矩形内部(含边界).
对于A,当时,BP=BC+μBB1=BC+μCC1,即此时线段,周长不是定值,故A错误;
对于B,当时,BP=λBC+BB1=BB1+λB1C1,故此时点轨迹为线段,而,平面,则有到平面的距离为定值,所以其体积为定值,故B正确.
对于C,当时,BP=12BC+μBB1,取,中点分别为,,则BP=BQ+μQH,所以点轨迹为线段,不妨建系解决,建立空间直角坐标系如图,,,,则A1P=−32,0,μ−1,BP=0,−12,μ,A1P⋅BP=μμ−1=0,所以或.故均满足,故C错误;
对于D,当时,BP=λBC+12BB1,取,中点为.BP=BM+λMN,所以点轨迹为线段.设,因为A32,0,0,所以AP=−32,y0,12,A1B=−32,12,−1,所以,此时与重合,故D正确.
故选:BD.
【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.
2022
已知正方体,则( )
A.直线与所成的角为B.直线与所成的角为
C.直线与平面所成的角为D.直线与平面ABCD所成的角为
【答案】ABD
【难度】0.85
【分析】数形结合,依次对所给选项进行判断即可.
【详解】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,
因为四边形为正方形,则,故直线与所成的角为,A正确;
连接,因为平面,平面,则,
因为,,所以平面,
又平面,所以,故B正确;
连接,设,连接,
因为平面,平面,则,
因为,,所以平面,
所以为直线与平面所成的角,
设正方体棱长为,则,,,
所以,直线与平面所成的角为,故C错误;
因为平面,所以为直线与平面所成的角,易得,故D正确.
故选:ABD
2022
南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )
A.B.C.D.
【答案】C
【难度】0.85
【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.
【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.
棱台上底面积,下底面积,
∴
.
故选:C.
2022
已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )
A.B.C.D.
【答案】C
【难度】0.65
【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.
【详解】∵球的体积为,所以球的半径,
[方法一]:导数法
设正四棱锥的底面边长为,高为,
则,,
所以,
所以正四棱锥的体积,
所以,
当时,,当时,,
所以当时,正四棱锥的体积取最大值,最大值为,
又时,,时,,
所以正四棱锥的体积的最小值为,
所以该正四棱锥体积的取值范围是.
故选:C.
[方法二]:基本不等式法
由方法一故所以当且仅当取到,
当时,得,则
当时,球心在正四棱锥高线上,此时,
,正四棱锥体积,故该正四棱锥体积的取值范围是
2023
下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有( )
A.直径为的球体
B.所有棱长均为的四面体
C.底面直径为,高为的圆柱体
D.底面直径为,高为的圆柱体
【答案】ABD
【难度】0.4
【分析】根据题意结合正方体的性质逐项分析判断.
【详解】对于选项A:因为,即球体的直径小于正方体的棱长,
所以能够被整体放入正方体内,故A正确;
对于选项B:因为正方体的面对角线长为,且,
所以能够被整体放入正方体内,故B正确;
对于选项C:因为正方体的体对角线长为,且,
所以不能够被整体放入正方体内,故C不正确;
对于选项D:因为,可知底面正方形不能包含圆柱的底面圆,
如图,过的中点作,设,
可知,则,
即,解得,
且,即,
故以为轴可能对称放置底面直径为圆柱,
若底面直径为的圆柱与正方体的上下底面均相切,设圆柱的底面圆心,与正方体的下底面的切点为,
可知:,则,
即,解得,
根据对称性可知圆柱的高为,
所以能够被整体放入正方体内,故D正确;
故选:ABD.
2023
在正四棱台中,,则该棱台的体积为 .
【答案】/
【难度】0.65
【分析】结合图像,依次求得,从而利用棱台的体积公式即可得解.
【详解】如图,过作,垂足为,易知为四棱台的高,
因为,
则,
故,则,
所以所求体积为.
故答案为:.
2024
已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为( )
A.B.C.D.
【答案】B
【难度】0.85
【分析】设圆柱的底面半径为,根据圆锥和圆柱的侧面积相等可得半径的方程,求出解后可求圆锥的体积.
【详解】设圆柱的底面半径为,则圆锥的母线长为,
而它们的侧面积相等,所以即,
故,故圆锥的体积为.
故选:B.
年份
题目
2020
将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为 .
【答案】
【难度】0.65
【分析】首先判断出数列与项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果.
【详解】因为数列是以1为首项,以2为公差的等差数列,
数列是以1首项,以3为公差的等差数列,
所以这两个数列的公共项所构成的新数列是以1为首项,以6为公差的等差数列,
所以的前项和为,
故答案为:.
【点睛】该题考查的是有关数列的问题,涉及到的知识点有两个等差数列的公共项构成新数列的特征,等差数列求和公式,属于简单题目.
2022
某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和,对折2次共可以得到5dm×12dm,10dm×6dm,20dm×3dm三种规格的图形,它们的面积之和,以此类推,则对折4次共可以得到不同规格图形的种数为 ;如果对折次,那么 .
【答案】 5 720−15(3+n)2n−4
【难度】0.65
【分析】(1)按对折列举即可;(2)根据规律可得,再根据错位相减法得结果.
【详解】(1)由对折2次共可以得到5dm×12dm,10dm×6dm,20dm×3dm三种规格的图形,所以对着三次的结果有:52×12,5×6,10×3;20×32,共4种不同规格(单位dm2);
故对折4次可得到如下规格:,52×6,,,20×34,共5种不同规格;
(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积成公比为的等比数列,首项为120dm2,第n次对折后的图形面积为120×12n−1,对于第n此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为种(证明从略),故得猜想Sn=120(n+1)2n−1,
设S=k=1nSk=120×220+120×321+120×422+⋯+120n+12n−1,
则12S=120×221+120×322+⋯+120n2n−1+120(n+1)2n,
两式作差得:
12S=240+12012+122+⋯+12n−1−120n+12n
=240+601−12n−11−12−120n+12n
=360−1202n−1−120n+12n=360−120n+32n,
因此,S=720−240n+32n=720−15n+32n−4.
故答案为:;720−15n+32n−4.
【点睛】方法点睛:数列求和的常用方法:
(1)对于等差等比数列,利用公式法可直接求解;
(2)对于结构,其中是等差数列,是等比数列,用错位相减法求和;
(3)对于结构,利用分组求和法;
(4)对于结构,其中是等差数列,公差为,则,利用裂项相消法求和.
2023
记为数列的前项和,设甲:为等差数列;乙:为等差数列,则( )
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
【答案】C
【难度】0.65
【分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n项和与第n项的关系推理判断作答.,
【详解】方法1,甲:为等差数列,设其首项为,公差为,
则,
因此为等差数列,则甲是乙的充分条件;
反之,乙:为等差数列,即为常数,设为,
即,则,有,
两式相减得:,即,对也成立,
因此为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件,C正确.
方法2,甲:为等差数列,设数列的首项,公差为,即,
则,因此为等差数列,即甲是乙的充分条件;
反之,乙:为等差数列,即,
即,,
当时,上两式相减得:,当时,上式成立,
于是,又为常数,
因此为等差数列,则甲是乙的必要条件,
所以甲是乙的充要条件.
故选:C
年份
题目
2020
6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )
A.120种B.90种
C.60种D.30种
【答案】C
【难度】0.85
【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解.
【详解】首先从名同学中选名去甲场馆,方法数有;
然后从其余名同学中选名去乙场馆,方法数有;
最后剩下的名同学去丙场馆.
故不同的安排方法共有种.
故选:C
【点睛】本小题主要考查分步计数原理和组合数的计算,属于基础题.
2022
的展开式中的系数为 (用数字作答).
【答案】-28
【难度】0.65
【分析】可化为,结合二项式展开式的通项公式求解.
【详解】因为,
所以的展开式中含的项为,
的展开式中的系数为-28
故答案为:-28
2023
某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有 种(用数字作答).
【答案】64
【难度】0.85
【分析】分类讨论选修2门或3门课,对选修3门,再讨论具体选修课的分配,结合组合数运算求解.
【详解】(1)当从8门课中选修2门,则不同的选课方案共有种;
(2)当从8门课中选修3门,
①若体育类选修课1门,则不同的选课方案共有种;
②若体育类选修课2门,则不同的选课方案共有种;
综上所述:不同的选课方案共有种.
故答案为:64.
年份
题目
2020
信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为,且,定义X的信息熵.则( )
A.若n=1,则H(X)=0
B.若n=2,则H(X)随着的增大而增大
C.若,则H(X)随着n的增大而增大
D.若n=2m,随机变量Y所有可能的取值为,且,则H(X)≤H(Y)
【答案】AC
【难度】0.4
【分析】对于A选项,求得,由此判断出A选项;对于B选项,利用特殊值法进行排除;对于C选项,计算出,利用对数函数的性质可判断出C选项;对于D选项,计算出 ,利用基本不等式和对数函数的性质判断出D选项.
【详解】对于A选项,若,则,所以,所以A选项正确.
对于B选项,若,则,,
所以,
当时,,
当时,,
两者相等,所以B选项错误.
对于C选项,若,则
,
则随着的增大而增大,所以C选项正确.
对于D选项,若,随机变量的所有可能的取值为,且 ( ).
.
由于,所以 ,所以 ,
所以,
所以,所以D选项错误.
故选:AC
【点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题.
2021
有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则( )
A.两组样本数据的样本平均数相同
B.两组样本数据的样本中位数相同
C.两组样本数据的样本标准差相同
D.两组样本数据的样本极差相同
【答案】CD
【难度】0.94
【分析】A、C利用两组数据的线性关系有、,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B、D的正误.
【详解】A:且,故平均数不相同,错误;
B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;
C:,故方差相同,正确;
D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确;
故选:CD
2021
有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
A.甲与丙相互独立B.甲与丁相互独立
C.乙与丙相互独立D.丙与丁相互独立
【答案】B
【难度】0.65
【分析】根据独立事件概率关系逐一判断
【详解】P(甲)=16,P(乙)=16,P(丙)=536,P(丁)=636=16, ,
P(甲丙)=0≠P(甲)P(丙),P(甲丁)=136=P(甲)P(丁),
P(乙丙)=136≠P(乙)P(丙),P(丙丁)=0≠P(丁)P(丙),
故选:B
【点睛】判断事件是否独立,先计算对应概率,再判断是否成立
2022
从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )
A.B.C.D.
【答案】D
【难度】0.85
【分析】由古典概型概率公式结合组合、列举法即可得解.
【详解】从2至8的7个整数中随机取2个不同的数,共有种不同的取法,
若两数不互质,不同的取法有:,共7种,
故所求概率.
故选:D.
2022
有一组样本数据,其中是最小值,是最大值,则( )
A.的平均数等于的平均数
B.的中位数等于的中位数
C.的标准差不小于的标准差
D.的极差不大于的极差
【答案】BD
【难度】0.65
【分析】根据题意结合平均数、中位数、标准差以及极差的概念逐项分析判断.
【详解】对于选项A:设的平均数为,的平均数为,
则,
因为没有确定的大小关系,所以无法判断的大小,
例如:,可得;
例如,可得;
例如,可得;故A错误;
对于选项B:不妨设,
可知的中位数等于的中位数均为,故B正确;
对于选项C:因为是最小值,是最大值,
则的波动性不大于的波动性,即的标准差不大于的标准差,
例如:,则平均数,
标准差,
,则平均数,
标准差,
显然,即;故C错误;
对于选项D:不妨设,
则,当且仅当时,等号成立,故D正确;
故选:BD.
2023
随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入服从正态分布,假设推动出口后的亩收入服从正态分布,则( )(若随机变量Z服从正态分布,)
A.B.
C.D.
【答案】BC
【难度】0.85
【分析】根据正态分布的原则以及正态分布的对称性即可解出.
【详解】依题可知,,所以,
故,C正确,D错误;
因为,所以,
因为,所以,
而,B正确,A错误,
故选:BC.
2024
甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 .
【答案】/0.5
【难度】0.4
【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.
【详解】设甲在四轮游戏中的得分分别为,四轮的总得分为.
对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲得分的出牌组合有六种,从而甲在该轮得分的概率,所以.
从而.
记.
如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以;
如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以.
而的所有可能取值是0,1,2,3,故,.
所以,,两式相减即得,故.
所以甲的总得分不小于2的概率为.
故答案为:.
【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.
年份
题目
2020
已知曲线.( )
A.若m>n>0,则C是椭圆,其焦点在y轴上
B.若m=n>0,则C是圆,其半径为
C.若mn0,则C是两条直线
【答案】ACD
【难度】0.65
【分析】结合选项进行逐项分析求解,时表示椭圆,时表示圆,时表示双曲线,时表示两条直线.
【详解】对于A,若,则可化为,
因为,所以,
即曲线表示焦点在轴上的椭圆,故A正确;
对于B,若,则可化为,
此时曲线表示圆心在原点,半径为的圆,故B不正确;
对于C,若,则可化为,
此时曲线表示双曲线,
由可得,故C正确;
对于D,若,则可化为,
,此时曲线表示平行于轴的两条直线,故D正确;
故选:ACD.
【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.
2020
斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则= .
【答案】
【难度】0.85
【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y并整理得到关于x的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.
【详解】∵抛物线的方程为,∴抛物线的焦点F坐标为,
又∵直线AB过焦点F且斜率为3,∴直线AB的方程为:
代入抛物线方程消去y并化简得,
解法一:解得
所以
解法二:
设,则,
过分别作准线的垂线,设垂足分别为如图所示.
故答案为:
【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.
2021
已知,是椭圆:的两个焦点,点在上,则的最大值为( )
A.13B.12C.9D.6
【答案】C
【难度】0.65
【分析】本题通过利用椭圆定义得到,借助基本不等式即可得到答案.
【详解】由题,,则,
所以(当且仅当时,等号成立).
故选:C.
2021
已知点在圆上,点、,则( )
A.点到直线的距离小于
B.点到直线的距离大于
C.当最小时,
D.当最大时,
【答案】ACD
【难度】0.65
【分析】计算出圆心到直线的距离,可得出点到直线的距离的取值范围,可判断AB选项的正误;分析可知,当最大或最小时,与圆相切,利用勾股定理可判断CD选项的正误.
【详解】圆的圆心为,半径为,
直线的方程为,即,
圆心到直线的距离为,
所以,点到直线的距离的最小值为,最大值为,A选项正确,B选项错误;
如下图所示:
当最大或最小时,与圆相切,连接、,可知,
,,由勾股定理可得,CD选项正确.
故选:ACD.
【点睛】结论点睛:若直线与半径为的圆相离,圆心到直线的距离为,则圆上一点到直线的距离的取值范围是.
2021
已知为坐标原点,抛物线:()的焦点为,为上一点,与轴垂直,为轴上一点,且,若,则的准线方程为 .
【答案】
【难度】0.85
【分析】先用坐标表示,再根据向量垂直坐标表示列方程,解得,即得结果.
【详解】抛物线: ()的焦点,
∵P为上一点,与轴垂直,
所以P的横坐标为,代入抛物线方程求得P的纵坐标为,
不妨设,
因为Q为轴上一点,且,所以Q在F的右侧,
又,
因为,所以,
,
所以的准线方程为
故答案为:.
【点睛】利用向量数量积处理垂直关系是本题关键.
2022
已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则( )
A.C的准线为B.直线AB与C相切
C.D.
【答案】BCD
【难度】0.65
【分析】求出抛物线方程可判断A,联立AB与抛物线的方程求交点可判断B,利用距离公式及弦长公式可判断C、D.
【详解】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;
,所以直线的方程为,
联立,可得,解得,故B正确;
设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,
所以,直线的斜率存在,设其方程为,,
联立,得,
所以,所以或,,
又,,
所以,故C正确;
因为,,
所以,而,故D正确.
故选:BCD
2022
写出与圆和都相切的一条直线的方程 .
【答案】或或
【难度】0.65
【分析】先判断两圆位置关系,分情况讨论即可.
【详解】[方法一]:
显然直线的斜率不为0,不妨设直线方程为,
于是,
故①,于是或,
再结合①解得或或,
所以直线方程有三条,分别为,,
填一条即可
[方法二]:
设圆的圆心,半径为,
圆的圆心,半径,
则,因此两圆外切,
由图像可知,共有三条直线符合条件,显然符合题意;
又由方程和相减可得方程,
即为过两圆公共切点的切线方程,
又易知两圆圆心所在直线OC的方程为,
直线OC与直线的交点为,
设过该点的直线为,则,解得,
从而该切线的方程为填一条即可
[方法三]:
圆的圆心为,半径为,
圆的圆心为,半径为,
两圆圆心距为,等于两圆半径之和,故两圆外切,
如图,
当切线为l时,因为,所以,设方程为
O到l的距离,解得,所以l的方程为,
当切线为m时,设直线方程为,其中,,
由题意,解得,
当切线为n时,易知切线方程为,
故答案为:或或.
2022
已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是 .
【答案】13
【难度】0.15
【分析】利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转化为的周长,利用椭圆的定义得到周长为.
【详解】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为, 直线的方程:,代入椭圆方程,整理化简得到:,
判别式,
∴,
∴ , 得,
∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.
故答案为:13.
2023
设椭圆的离心率分别为.若,则( )
A.B.C.D.
【答案】A
【难度】0.85
【分析】根据给定的椭圆方程,结合离心率的意义列式计算作答.
【详解】由,得,因此,而,所以.
故选:A
2023
过点与圆相切的两条直线的夹角为,则( )
A.1B.C.D.
【答案】B
【难度】0.65
【分析】方法一:根据切线的性质求切线长,结合倍角公式运算求解;方法二:根据切线的性质求切线长,结合余弦定理运算求解;方法三:根据切线结合点到直线的距离公式可得,利用韦达定理结合夹角公式运算求解.
【详解】方法一:因为,即,可得圆心,半径,
过点作圆C的切线,切点为,
因为,则,
可得,
则,
,
即为钝角,
所以;
法二:圆的圆心,半径,
过点作圆C的切线,切点为,连接,
可得,则,
因为
且,则,
即,解得,
即为钝角,则,
且为锐角,所以;
方法三:圆的圆心,半径,
若切线斜率不存在,则切线方程为x=0,则圆心到切点的距离,不合题意;
若切线斜率存在,设切线方程为,即,
则,整理得,且
设两切线斜率分别为,则,
可得,
所以,即,可得,
则,
且,则,解得.
故选:B.
2023
已知双曲线的左、右焦点分别为.点在上,点在轴上,,则的离心率为 .
【答案】/
【难度】0.4
【分析】方法一:利用双曲线的定义与向量数积的几何意义得到关于的表达式,从而利用勾股定理求得,进而利用余弦定理得到的齐次方程,从而得解.
方法二:依题意设出各点坐标,从而由向量坐标运算求得,,将点代入双曲线得到关于的齐次方程,从而得解;
【详解】方法一:
依题意,设,则,
在中,,则,故或(舍去),
所以,,则,
故,
所以在中,,整理得,
故.
方法二:
依题意,得,令,
因为,所以,则,
又,所以,则,
又点在上,则,整理得,则,
所以,即,
整理得,则,解得或,
又,所以或(舍去),故.
故答案为:.
【点睛】关键点睛:双曲线过焦点的三角形的解决关键是充分利用双曲线的定义,结合勾股定理与余弦定理得到关于的齐次方程,从而得解.
2024
设计一条美丽的丝带,其造型可以看作图中的曲线C的一部分.已知C过坐标原点O.且C上的点满足:横坐标大于,到点的距离与到定直线的距离之积为4,则( )
A.B.点在C上
C.C在第一象限的点的纵坐标的最大值为1D.当点在C上时,
【答案】ABD
【难度】0.65
【分析】根据题设将原点代入曲线方程后可求,故可判断A的正误,结合曲线方程可判断B的正误,利用特例法可判断C的正误,将曲线方程化简后结合不等式的性质可判断D的正误.
【详解】对于A:设曲线上的动点Px,y,则且,
因为曲线过坐标原点,故,解得,故A正确.
对于B:又曲线方程为,而,
故.
当时,,
故在曲线上,故B正确.
对于C:由曲线的方程可得,取,
则,而,故此时,
故在第一象限内点的纵坐标的最大值大于1,故C错误.
对于D:当点在曲线上时,由C的分析可得,
故,故D正确.
故选:ABD.
【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.
2024
设双曲线的左右焦点分别为,过作平行于轴的直线交C于A,B两点,若,则C的离心率为 .
【答案】
【难度】0.65
【分析】由题意画出双曲线大致图象,求出,结合双曲线第一定义求出,即可得到的值,从而求出离心率.
【详解】由题可知三点横坐标相等,设在第一象限,将代入
得,即,故,,
又,得,解得,代入得,
故,即,所以.
故答案为:
年份
题目
2020
基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0 =1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )
A.1.2天B.1.8天
C.2.5天D.3.5天
【答案】B
【难度】0.65
【分析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据e0.38(t+t1)=2e0.38t,解得即可得结果.
【详解】因为,,,所以,所以,
设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,
则e0.38(t+t1)=2e0.38t,所以,所以0.38t1=ln2,
所以t1=ln20.38≈≈1.8天.
故选:B.
【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.
2020
若定义在的奇函数f(x)在单调递减,且f(2)=0,则满足的x的取值范围是( )
A.B.
C.D.
【答案】D
【难度】0.65
【分析】首先根据函数奇偶性与单调性,得到函数在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.
【详解】因为定义在上的奇函数在上单调递减,且,
所以在(0,+∞)上也是单调递减,且,,
所以当时,,当时,,
所以由可得:
或或
解得或,
所以满足的的取值范围是,
故选:D.
【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.
2021
若过点可以作曲线的两条切线,则( )
A.B.
C.D.
【答案】D
【难度】0.65
【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;
解法二:画出曲线的图象,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.
【详解】在曲线上任取一点,对函数求导得,
所以,曲线在点处的切线方程为,即,
由题意可知,点在直线上,可得,
令,则.
当时,,此时函数单调递增,
当时,,此时函数单调递减,
所以,,
由题意可知,直线与曲线的图象有两个交点,则,
当时,,当时,,作出函数的图象如下图所示:
由图可知,当时,直线与曲线的图象有两个交点.
故选:D.
解法二:画出函数曲线的图象如图所示,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.由此可知.
故选:D.
【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.
2021
已知函数是偶函数,则 .
【答案】1
【难度】0.85
【分析】利用偶函数的定义可求参数的值.
【详解】因为,故,
因为为偶函数,故,
时,整理得到,
故,
故答案为:1
2021
函数的最小值为 .
【答案】1
【难度】0.85
【分析】由解析式知定义域为(0,+∞),讨论、、,并结合导数研究的单调性,即可求最小值.
【详解】由题设知:定义域为(0,+∞),
∴当时,,此时单调递减;
当时,,有,此时单调递减;
当时,,有,此时单调递增;
又在各分段的界点处连续,
∴综上有:时,单调递减,时,单调递增;
∴
故答案为:1.
2022
已知函数,则( )
A.有两个极值点B.有三个零点
C.点是曲线的对称中心D.直线是曲线的切线
【答案】AC
【难度】0.65
【分析】利用极值点的定义可判断A,结合的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.
【详解】由题,,令得或,
令得,
所以在,上单调递增,上单调递减,所以是极值点,故A正确;
因,,,
所以,函数在上有一个零点,
当时,,即函数在上无零点,
综上所述,函数有一个零点,故B错误;
令,该函数的定义域为,,
则是奇函数,是的对称中心,
将的图象向上移动一个单位得到的图象,
所以点是曲线的对称中心,故C正确;
令,可得,又,
当切点为时,切线方程为,当切点为时,切线方程为,故D错误.
故选:AC.
2022
已知函数及其导函数的定义域均为,记,若,均为偶函数,则( )
A.B.C.D.
【答案】BC
【难度】0.4
【分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.
【详解】[方法一]:对称性和周期性的关系研究
对于,因为为偶函数,所以即①,所以,所以关于对称,则,故C正确;
对于,因为为偶函数,,,所以关于对称,由①求导,和,得,所以,所以关于对称,因为其定义域为R,所以,结合关于对称,从而周期,所以,,故B正确,D错误;
若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.
故选:BC.
[方法二]:【最优解】特殊值,构造函数法.
由方法一知周期为2,关于对称,故可设,则,显然A,D错误,选BC.
故选:BC.
[方法三]:
因为,均为偶函数,
所以即,,
所以,,则,故C正确;
函数,的图象分别关于直线对称,
又,且函数可导,
所以,
所以,所以,
所以,,故B正确,D错误;
若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.
故选:BC.
【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;
方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.
2022
若曲线有两条过坐标原点的切线,则a的取值范围是 .
【答案】
【难度】0.85
【分析】设出切点横坐标,利用导数的几何意义求得切线方程,根据切线经过原点得到关于的方程,根据此方程应有两个不同的实数根,求得的取值范围.
【详解】∵,∴,
设切点为,则,切线斜率,
切线方程为:,
∵切线过原点,∴,
整理得:,
∵切线有两条,∴,解得或,
∴的取值范围是,
故答案为:
2022
设,则( )
A.B.C.D.
【答案】C
【难度】0.4
【分析】构造函数, 导数判断其单调性,由此确定的大小.
【详解】方法一:构造法
设,因为,
当时,,当时,
所以函数在单调递减,在上单调递增,
所以,所以,故,即,
所以,所以,故,所以,
故,
设,则,
令,,
当时,,函数单调递减,
当时,,函数单调递增,
又,
所以当时,,
所以当时,,函数单调递增,
所以,即,所以
故选:C.
方法二:比较法
解: , , ,
① ,
令
则 ,
故 在 上单调递减,
可得 ,即 ,所以 ;
② ,
令
则 ,
令 ,所以 ,
所以 在 上单调递增,可得 ,即 ,
所以 在 上单调递增,可得 ,即 ,所以
故
2023
设函数在区间上单调递减,则的取值范围是( )
A.B.
C.D.
【答案】D
【难度】0.85
【分析】利用指数型复合函数单调性,判断列式计算作答.
【详解】函数在R上单调递增,而函数在区间上单调递减,
则有函数在区间上单调递减,因此,解得,
所以的取值范围是.
故选:D
2023
噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级,其中常数是听觉下限阈值,是实际声压.下表为不同声源的声压级:
声源
与声源的距离
声压级
燃油汽车
10
混合动力汽车
10
电动汽车
10
40
已知在距离燃油汽车、混合动力汽车、电动汽车处测得实际声压分别为,则( ).
A.B.
C.D.
【答案】ACD
【难度】0.65
【分析】根据题意可知,结合对数运算逐项分析判断.
【详解】由题意可知:,
对于选项A:可得,
因为,则,即,
所以且,可得,故A正确;
对于选项B:可得,
因为,则,即,
所以且,可得,
当且仅当时,等号成立,故B错误;
对于选项C:因为,即,
可得,即,故C正确;
对于选项D:由选项A可知:,
且,则,
即,可得,且,所以,故D正确;
故选:ACD.
2023
已知函数的定义域为,,则( ).
A.B.
C.是偶函数D.为的极小值点
【答案】ABC
【难度】0.65
【分析】方法一:利用赋值法,结合函数奇偶性的判断方法可判断选项ABC,举反例即可排除选项D.
方法二:选项ABC的判断与方法一同,对于D,可构造特殊函数进行判断即可.
【详解】方法一:
因为,
对于A,令,,故正确.
对于B,令,,则,故B正确.
对于C,令,,则,
令,
又函数的定义域为,所以为偶函数,故正确,
对于D,不妨令,显然符合题设条件,此时无极值,故错误.
方法二:
因为,
对于A,令,,故正确.
对于B,令,,则,故B正确.
对于C,令,,则,
令,
又函数的定义域为,所以为偶函数,故正确,
对于D,当时,对两边同时除以,得到,
故可以设,则,
当肘,,则,
令,得;令,得;
故在上单调递减,在上单调递增,
因为为偶函数,所以在上单调递增,在上单调递减,
显然,此时是的极大值,故D错误.
故选:.
2024
已知函数在R上单调递增,则a的取值范围是( )
A.B.C.D.
【答案】B
【难度】0.65
【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.
【详解】因为在上单调递增,且时,单调递增,
则需满足,解得,
即a的范围是.
故选:B.
2024
已知函数的定义域为R,,且当时,则下列结论中一定正确的是( )
A.B.
C.D.
【答案】B
【难度】0.4
【分析】代入得到,再利用函数性质和不等式的性质,逐渐递推即可判断.
【详解】因为当时,所以,
又因为,
则,
,
,
,
,则依次下去可知,则B正确;
且无证据表明ACD一定正确.
故选:B.
【点睛】关键点点睛:本题的关键是利用,再利用题目所给的函数性质,代入函数值再结合不等式同向可加性,不断递推即可.
2024
设函数,则( )
A.是的极小值点B.当时,
C.当时,D.当时,
【答案】ACD
【难度】0.65
【分析】求出函数的导数,得到极值点,即可判断A;利用函数的单调性可判断B;根据函数在上的值域即可判断C;直接作差可判断D.
【详解】对A,因为函数的定义域为R,而,
易知当时,f′x0
函数在上单调递增,在上单调递减,在上单调递增,故是函数的极小值点,正确;
对B,当时,,所以,
而由上可知,函数在0,1上单调递增,所以,错误;
对C,当时,,而由上可知,函数在上单调递减,
所以,即,正确;
对D,当时,,
所以,正确;
故选:ACD.
2024
若曲线在点处的切线也是曲线的切线,则 .
【答案】
【难度】0.65
【分析】先求出曲线在的切线方程,再设曲线的切点为,求出,利用公切线斜率相等求出,表示出切线方程,结合两切线方程相同即可求解.
【详解】由得,,
故曲线在处的切线方程为;
由得,
设切线与曲线相切的切点为,
由两曲线有公切线得,解得,则切点为,
切线方程为,
根据两切线重合,所以,解得.
故答案为:
年份
题目
2020
在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求的值;若问题中的三角形不存在,说明理由.
问题:是否存在,它的内角的对边分别为,且,,________?
注:如果选择多个条件分别解答,按第一个解答计分.
【答案】详见解析
【难度】0.65
【分析】方法一:由题意结合所给的条件,利用正弦定理角化边,得到a,b的比例关系,根据比例关系,设出长度长度,由余弦定理得到的长度,根据选择的条件进行分析判断和求解.
【详解】[方法一]【最优解】:余弦定理
由可得:,不妨设,
则:,即.
若选择条件①:
据此可得:,,此时.
若选择条件②:
据此可得:,
则:,此时:,则:.
若选择条件③:
可得,,与条件矛盾,则问题中的三角形不存在.
[方法二]:正弦定理
由,得.
由,得,即,
得.由于,得.所以.
若选择条件①:
由,得,得.
解得.所以,选条件①时问题中的三角形存在,此时.
若选择条件②:
由,得,解得,则.
由,得,得.
所以,选条件②时问题中的三角形存在,此时.
若选择条件③:
由于与矛盾,所以,问题中的三角形不存在.
【整体点评】方法一:根据正弦定理以及余弦定理可得的关系,再根据选择的条件即可解出,是本题的通性通法,也是最优解;
方法二:利用内角和定理以及两角差的正弦公式,消去角,可求出角,从而可得,再根据选择条件即可解出.
2021
记是内角,,的对边分别为,,.已知,点在边上,.
(1)证明:;
(2)若,求.
【答案】(1)证明见解析;(2).
【难度】0.65
【分析】(1)根据正弦定理的边角关系有,结合已知即可证结论.
(2)方法一:两次应用余弦定理,求得边与的关系,然后利用余弦定理即可求得的值.
【详解】(1)设的外接圆半径为R,由正弦定理,
得,
因为,所以,即.
又因为,所以.
(2)[方法一]【最优解】:两次应用余弦定理
因为,如图,在中,,①
在中,.②
由①②得,整理得.
又因为,所以,解得或,
当时,a+b=c3+3c3
相关试卷
这是一份2020~2024【新高考II卷】数学命题规律分析暨2025年命题方向预测,共115页。试卷主要包含了排列组合二项式定理等内容,欢迎下载使用。
这是一份教育部近5年高考数学命题内容和方向汇总,共2页。
这是一份2024年浙江省柯南高考研究命题组方向性测试----数学,共9页。