所属成套资源:(寒假)2024-2025年高二数学 寒假巩固讲义+随堂检测 (2份,原卷版+教师版)
- (寒假)2024-2025年高二数学 寒假巩固讲义+随堂检测 第04课 正弦定理、余弦定理(2份,原卷版+教师版) 试卷 0 次下载
- (寒假)2024-2025年高二数学 寒假巩固讲义+随堂检测 第05课 平面向量(2份,原卷版+教师版) 试卷 0 次下载
- (寒假)2024-2025年高二数学 寒假巩固讲义+随堂检测 第07课 直线与圆的位置关系(2份,原卷版+教师版) 试卷 0 次下载
- (寒假)2024-2025年高二数学 寒假巩固讲义+随堂检测 第08课 直线与圆锥曲线的位置关系(2份,原卷版+教师版) 试卷 0 次下载
- (寒假)2024-2025年高二数学 寒假巩固讲义+随堂检测 第09课 圆锥曲线中的最值、定点、定值问题(2份,原卷版+教师版) 试卷 0 次下载
(寒假)2024-2025年高二数学 寒假巩固讲义+随堂检测 第06课 空间角与距离的计算(2份,原卷版+教师版)
展开
这是一份(寒假)2024-2025年高二数学 寒假巩固讲义+随堂检测 第06课 空间角与距离的计算(2份,原卷版+教师版),文件包含寒假2024-2025年高二数学寒假巩固讲义+随堂检测第06课空间角与距离的计算教师版docx、寒假2024-2025年高二数学寒假巩固讲义+随堂检测第06课空间角与距离的计算教师版pdf、寒假2024-2025年高二数学寒假巩固讲义+随堂检测第06课空间角与距离的计算原卷版docx、寒假2024-2025年高二数学寒假巩固讲义+随堂检测第06课空间角与距离的计算原卷版pdf等4份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
1. 直线的方向向量和平面的法向量
(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.
(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.
2. 空间位置关系的向量表示
直线l的方向向量为n,平面α的法向量为m,
l∥α,n⊥m⇔n·m=0
l⊥α,n∥m⇔n=λm
平面α,β的法向量分别为n,m,
α∥β,n∥m⇔n=λm
α⊥β,n⊥m⇔n·m=03. 异面直线所成的角
3.设a,b分别是两异面直线l1,l2的方向向量,则
4. 求直线与平面所成的角
设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,则sinθ=|cs〈a,n〉|=eq \f(|a·n|,|a||n|).
5. 求二面角的大小
(1)如图①,AB,CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈eq \(AB,\s\up6(→)),eq \(CD,\s\up6(→))〉
① ② ③
(2)如图②③,n1,n2 分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足
|cs θ|=|cs〈n1,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角).
考向一 运用向量研究异面直线所成的角
【例1】如图,在正方体中,点在线段上运动,则 ( )
A.直线平面
B.三棱锥的体积为定值
C.异面直线与所成角的取值范围是
D.直线与平面所成角的正弦值的最大值为
【变式1-1】如图,在空间直角坐标系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1所成角的余弦值为________.
方法总结:利用向量法求异面直线所成角的方法:
(1)选择三条两两垂直的直线建立空间直角坐标系;
(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;
(3)利用向量的夹角公式求出向量夹角的余弦值;
(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.
考向二 运用向量研究直线与平面所成的角
【例2】如图,在多面体中,四边形是菱形,,,,平面,,,是的中点.
(1)求证:平面平面;
(2)求直线与平面所成的角的正弦值.
【变式2-1】如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.
(1) 求证:AC⊥B1D;
(2) 求直线B1C1与平面ACD1所成角的正弦值.
方法总结:利用向量法求线面角的方法:
(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);
(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.
考向三 运用向量研究二面角
【例3】如图,在四棱锥中,底面四边形为菱形,点为棱的中点,为边的中点.(1)求证:平面;
(2)若侧面底面,且,,求平面与平面的夹角的余弦值.
【变式3-1】如图,在棱长均为的三棱柱中,平面平面,,为与的交点.(1)求证:;
(2)求平面与平面所成锐二面角的余弦值.
方法总结:利用向量法计算二面角大小的常用方法:
(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.
(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.
考向四 利用空间向量解决探索性问题
【例4】如图,P为圆锥的顶点,O为圆锥底面的圆心,圆锥的底面直径AB=4,母线PH=2 eq \r(2),M是PB的中点,四边形OBCH为正方形.
(1) 设平面POH∩平面PBC=l,求证:l∥BC;
(2) 设D为OH的中点,N是线段CD上的一个点,当MN与平面PAB所成的角最大时,求MN的长.
【变式4-1】四棱锥中,底面是边长为的正方形,,点P在底面的射影为点O,且,点M是的中点.
(1)求证:;
(2)在线段上,是否存在点N,使二面角的余弦值为?若存在,请确定点N的位置,若不存在,请说明理由.
【变式4-2】如图,在四棱锥中,已知四边形是边长为的正方形,点在底面上的射影为底面的中心,点在棱上,且的面积为1.
(1)若点是的中点,证明:平面平面;
(2)在棱上是否存在一点,使得直线与平面所成的角的正弦值为?若存在,求出点的位置;若不存在,说明理由.
空间角与距离的计算 随堂检测
1.已知A(1,0,0),B(0,1,0),C(0,0,1),则下列向量是平面ABC法向量的是( )
A.(-1,1,1) B.(1,-1,1)
C.eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(3),3),-\f(\r(3),3),-\f(\r(3),3))) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),3),\f(\r(3),3),-\f(\r(3),3)))
2.若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,1,1),则( )
A.l∥α B.l⊥α C.l⊂α或l∥α D.l与α斜交
3.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为( )
A.45° B.135° C.45°或135° D.90°
4.在直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为( )
A.eq \f(1,10) B.eq \f(2,5) C.eq \f(\r(30),10) D.eq \f(\r(2),2)
5.在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1,AB=2,DP=3.
(1)证明:BD⊥PA;
(2)求PD与平面PAB所成的角的正弦值.
6.如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点.
(1)证明:平面BED⊥平面ACD;
(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.
位置关系
向量表示
直线l1,l2的方向向量分别为n1,n2
l1∥l2
n1∥n2⇔n1=λn2
l1⊥l2
n1⊥n2⇔n1·n2=0
a与b的夹角β
l1与l2所成的角θ
范围
(0,π)
eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(π,2)))
a与b的夹角β
l1与l2所成的角θ
求法
csβ=eq \f(a·b,|a||b|)
csθ=|cs β|=eq \f(|a·b|,|a||b|)
相关试卷
这是一份(寒假)2024-2025年高二数学 寒假巩固讲义+随堂检测 第12课 导数的综合应用(2份,原卷版+教师版),文件包含寒假2024-2025年高二数学寒假巩固讲义+随堂检测第12课导数的综合应用教师版docx、寒假2024-2025年高二数学寒假巩固讲义+随堂检测第12课导数的综合应用教师版pdf、寒假2024-2025年高二数学寒假巩固讲义+随堂检测第12课导数的综合应用原卷版docx、寒假2024-2025年高二数学寒假巩固讲义+随堂检测第12课导数的综合应用原卷版pdf等4份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
这是一份(寒假)2024-2025年高二数学 寒假巩固讲义+随堂检测 第10课 第10课 数列的通项公式及求和(2份,原卷版+教师版),文件包含寒假2024-2025年高二数学寒假巩固讲义+随堂检测第10课第10课数列的通项公式及求和教师版docx、寒假2024-2025年高二数学寒假巩固讲义+随堂检测第10课第10课数列的通项公式及求和教师版pdf、寒假2024-2025年高二数学寒假巩固讲义+随堂检测第10课第10课数列的通项公式及求和原卷版docx、寒假2024-2025年高二数学寒假巩固讲义+随堂检测第10课第10课数列的通项公式及求和原卷版pdf等4份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
这是一份(寒假)2024-2025年高二数学 寒假巩固讲义+随堂检测 第07课 直线与圆的位置关系(2份,原卷版+教师版),文件包含寒假2024-2025年高二数学寒假巩固讲义+随堂检测第07课直线与圆的位置关系教师版docx、寒假2024-2025年高二数学寒假巩固讲义+随堂检测第07课直线与圆的位置关系教师版pdf、寒假2024-2025年高二数学寒假巩固讲义+随堂检测第07课直线与圆的位置关系原卷版docx、寒假2024-2025年高二数学寒假巩固讲义+随堂检测第07课直线与圆的位置关系原卷版pdf等4份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。