所属成套资源:【备战2025】2025年高考数学二轮复习专项精练(真题精练+模拟精练)
2025年高考数学二轮复习专项精练17 空间几何体(真题精练+模拟精练)
展开
这是一份2025年高考数学二轮复习专项精练17 空间几何体(真题精练+模拟精练),文件包含2025二轮复习专项精练17空间几何体真题精练+模拟精练原卷版docx、2025二轮复习专项精练17空间几何体真题精练+模拟精练解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
【真题精练】
一、单选题
1.(2024·全国·高考真题)已知正三棱台的体积为,,,则与平面ABC所成角的正切值为( )
A.B.1C.2D.3
2.(2023·全国·高考真题)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,,若的面积等于,则该圆锥的体积为( )
A.B.C.D.
3.(2023·全国·高考真题)已知四棱锥的底面是边长为4的正方形,,则的面积为( )
A.B.C.D.
4.(2022·全国·高考真题)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )
A.B.C.D.
5.(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )
A.B.C.D.
6.(2022·全国·高考真题)已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( )
A.B.C.D.
7.(2022·全国·高考真题)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( )
A.B.C.D.
8.(2022·全国·高考真题)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则( )
A.B.C.D.
二、多选题
9.(2023·全国·高考真题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有( )
A.直径为的球体
B.所有棱长均为的四面体
C.底面直径为,高为的圆柱体
D.底面直径为,高为的圆柱体
10.(2022·全国·高考真题)如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( )
A.B.
C.D.
三、填空题
11.(2024·全国·高考真题)已知圆台甲、乙的上底面半径均为,下底面半径均为,圆台的母线长分别为,,则圆台甲与乙的体积之比为 .
12.(2023·全国·高考真题)在正四棱台中,,则该棱台的体积为 .
13.(2023·全国·高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为 .
14.(2023·全国·高考真题)在正方体中,E,F分别为AB,的中点,以EF为直径的球的球面与该正方体的棱共有 个公共点.
【模拟精练】
一、单选题
1.(2024·江苏南通·二模)在棱长为2的正方体中,,,分别为棱,,的中点,平面截正方体外接球所得的截面面积为( )
A.B.C.D.
2.(2024·山东济南·二模)已知正三棱锥 P-ABC 的底面边长为 ,若半径为1的球与该正三棱锥的各棱均相切,则三棱锥 P-ABC 的体积为( )
A.2B.C.3D.
3.(23-24高三上·重庆·阶段练习)“方斗”常作为盛米的一种容器,其形状是一个上大下小的正四棱台,现有“方斗”容器如图所示,已知,,现往容器里加米,当米的高度是“方斗”高度的一半时,用米,则该“方斗”可盛米的总质量为( )
A.B.
C.D.
4.(2024·重庆·三模)如图,已知圆柱的斜截面是一个椭圆,该椭圆的长轴为圆柱的轴截面对角线,短轴长等于圆柱的底面直径.将圆柱侧面沿母线展开,则椭圆曲线在展开图中恰好为一个周期的正弦曲线.若该段正弦曲线是函数图象的一部分,且其对应的椭圆曲线的离心率为,则的值为( )
A.B.1C.D.2
5.(2023·浙江温州·二模)已知正四棱锥的底面边长为,高为3.以点为球心,为半径的球与过点的球相交,相交圆的面积为,则球的半径为( )
A.或B.或
C.或D.或
二、多选题
6.(2024·广东佛山·二模)对于棱长为1(单位:)的正方体容器(容器壁厚度忽略不计),下列说法正确的是( )
A.底面半径为,高为的圆锥形罩子(无底面)能够罩住水平放置的该正方体
B.以该正方体的三条棱作为圆锥的母线,则此圆锥的母线与底面所成角的正切值为
C.该正方体内能同时整体放入两个底面半径为,高为的圆锥
D.该正方体内能整体放入一个体积为的圆锥
7.(2024·广东梅州·二模)如图,平面,,M为线段AB的中点,直线MN与平面的所成角大小为30°,点P为平面内的动点,则( )
A.以为球心,半径为2的球面在平面上的截痕长为
B.若P到点M和点N的距离相等,则点P的轨迹是一条直线
C.若P到直线MN的距离为1,则的最大值为
D.满足的点P的轨迹是椭圆
8.(2024·湖北武汉·模拟预测)将两个各棱长均为1的正三棱锥和的底面重合,得到如图所示的六面体,则( )
A.该几何体的表面积为
B.该几何体的体积为
C.过该多面体任意三个顶点的截面中存在两个平面互相垂直
D.直线平面
9.(20-21高三上·湖南长沙·阶段练习)如图,在正方体中,点在线段上运动,有下列判断,其中正确的是( )
A.平面平面
B.平面
C.异面直线与所成角的取值范围是
D.三棱锥的体积不变
10.(2023·江苏南通·二模)如图,正三棱锥A-PBC和正三棱锥D-PBC的侧棱长均为,BC 2.若将正三棱锥A-PBC绕BC旋转,使得点A,P分别旋转至点处,且,B,C,D四点共面,点,D分别位于BC两侧,则( )
A.
B.平面BDC
C.多面体的外接球的表面积为
D.点A,P旋转运动的轨迹长相等
三、填空题
11.(23-24高三下·湖北武汉·阶段练习)已知圆台的体积为,其上底面圆半径为1,下底面圆半径为4,则该圆台的母线长为 .
12.(23-24高三下·广东·开学考试)如图,将正四棱柱斜立在平面上,顶点在平面内,平面,点在平面内,且.若将该正四棱柱绕旋转,的最大值为 .
13.(23-24高二上·上海·期中)如果一个多面体的所有面都是全等的正三角形或正多边形,每个顶点聚集的棱的条数都相等,这个多面体就叫做正多面体.下列几何体中,所有棱长均相等,同一表面的角都相等,则 是正多面体.(写出所有正确的序号)
相关试卷
这是一份2025年高考数学二轮复习专项精练28 定点、定值问题(真题精练+模拟精练),文件包含2025二轮复习专项精练28定点定值问题真题精练+模拟精练原卷版docx、2025二轮复习专项精练28定点定值问题真题精练+模拟精练解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
这是一份2025年高考数学二轮复习专项精练27 最值、范围问题(真题精练+模拟精练),文件包含2025二轮复习专项精练27最值范围问题真题精练+模拟精练原卷版docx、2025二轮复习专项精练27最值范围问题真题精练+模拟精练解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
这是一份2025年高考数学二轮复习专项精练24 直线与圆(真题精练+模拟精练),文件包含2025二轮复习专项精练24直线与圆真题精练+模拟精练原卷版docx、2025二轮复习专项精练24直线与圆真题精练+模拟精练解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。