山东省聊城2024年中考模拟数学试题(原卷版)
展开
这是一份山东省聊城2024年中考模拟数学试题(原卷版),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1.在实数,,0,中,最小的实数是( ).
A. B. C. 0D.
2.如图所示的几何体的俯视图是( )
A B. C. D.
3.如图,在ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是( )
A. 120°B. 130°C. 145°D. 150°
4.下列计算正确的是( ).
A. B.
C. D.
5.为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是( )
A. 92分,96分B. 94分,96分C. 96分,96分D. 96分,100分
6.计算的结果正确的是( ).
A. 1B. C. 5D. 9
7.如图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在这些小正方形的顶点上,那么的值为( ).
A. B. C. D.
8.用配方法解一元二次方程,配方正确是( ).
A. B.
C. D.
9.如图,是的直径,弦,垂足为点.连接,.如果,,那么图中阴影部分的面积是( ).
A. B. C. D.
10.如图,有一块半径为,圆心角为的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为( ).
A. B. C. D.
11.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第个图形用图表示,那么图㊿中的白色小正方形地砖的块数是( ).
…
A. 150B. 200C. 355D. 505
12.如图,在中,,,将绕点旋转得到,使点对应点落在上,在上取点,使,那么点到的距离等于( ).
A. B. C. D.
二、填空题
13.因式分解:________.
14.如图,在中,四边形为菱形,点在上,则的度数是________.
15.计算:________.
16.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是________.
17.如图,在直角坐标系中,点,是第一象限角平分线上的两点,点的纵坐标为1,且,在轴上取一点,连接,,,,使得四边形的周长最小,这个最小周长的值为________.
三、解答题
18.解不等式组,并写出它的所有整数解.
19.为了提高学生的综合素养,某校开设了五门手工活动课.按照类别分为:“剪纸”、“沙画”、“葫芦雕刻”、“泥塑”、“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.
根据以上信息,回答下列问题:
(1)本次调查的样本容量为________;统计图中的________,________;
(2)通过计算补全条形统计图;
(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.
20.今年植树节期间,某景观园林公司购进一批成捆的,两种树苗,每捆种树苗比每捆种树苗多10棵,每捆种树苗和每捆种树苗的价格分别是630元和600元,而每棵种树苗和每棵种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.
(1)求这一批树苗平均每棵的价格是多少元?
(2)如果购进的这批树苗共5500棵,种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进种树苗和种树苗各多少棵?并求出最低费用.
21.如图,已知平行四边形ABCD中,E是BC的中点,连接AE并延长,交DC的延长线于点F,且AF=AD,连接BF,求证:四边形ABFC是矩形.
22.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量.先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°.居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cs55°≈0.57,tan55°≈1.43)
23.如图,已知反比例函数的图象与直线相交于点,.
(1)求出直线的表达式;
(2)在轴上有一点使得面积为18,求出点的坐标.
24.如图,在ABC中,AB=BC,以△ABC边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.
(1)试证明DE是⊙O的切线;
(2)若⊙O的半径为5,AC=6,求此时DE的长.
25.如图,二次函数y=ax2+bx+4的图象与x轴交于点A(-1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E.垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
(3)连接CP,CD,在移动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与DCE相似,如果存在,求出点P的坐标,如果不存在,请说明理由.
成绩/分
84
88
92
96
100
人数/人
2
4
9
10
5
相关试卷
这是一份山东省聊城2024年中考模拟数学试题(原卷版),共6页。
这是一份2024年山东省枣庄市中考 数学试题(枣庄聊城临沂菏泽)(原卷版+解析版),共32页。
这是一份2024年山东省枣庄市中考 数学试题(枣庄聊城临沂菏泽)(原卷版+含解析),共32页。