中考数学一轮复习知识梳理+考点精讲专题21 平行四边形与多边形(2份,原卷版+解析版)
展开
这是一份中考数学一轮复习知识梳理+考点精讲专题21 平行四边形与多边形(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题21平行四边形与多边形原卷版doc、中考数学一轮复习知识梳理+考点精讲专题21平行四边形与多边形解析版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
多边形的内角和一般是利用公式求角,一般命题为填空题或选择题,难度不大。平行四边形的性质和判定是中考中的热点问题,单纯从它的性质和判定来讲,难度不大,但它经常和一些数学问题结合在一起出题。
考标要求
1.了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;
2.理解并掌握多边形内角和与外角和公式;
3.理解平行四边形的概念,了解四边形的不稳定性;
4.理解并证明平行四边形的有关性质定理.
考点精讲
考点1:多边形
考点2:平行四边形性质
平行四边形的定义:
两组对边分别平行的四边形叫做平行四边形,平行四边形用“▱”表示.
平行四边形的性质
边:两组对边分别平行且相等.即AB∥CD 且AB=CD,BC∥AD且AD=BC.
(2)角:对角相等,邻角互补.即∠BAD=∠BCD,∠ABC=∠ADC,
∠ABC+∠BCD=180°,∠BAD+∠ADC=180°.
(3)对角线:互相平分.即OA=OC,OB=OD
(4)对称性:中心对称但不是轴对称.
3.平行四边形中的几个解题模型
(1)如图①,AF平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABF为等腰三角形,即AB=BF.
(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;
两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,
△AOB≌△COD;
根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.
如图③,已知点E为AD上一点,根据平行线间的距离处处相等,可得
S△BEC=S△ABE+S△CDE.
(4) 根据平行四边形的面积的求法,可得AE·BC=AF·CD
考点3:平行四边形的判定
(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.
即若AB∥CD,AD∥BC,则四边形ABCD是□.
(2)方法二:两组对边分别相等的四边形是平行四边形.
即若AB=CD,AD=BC,则四边形ABCD是□.
(3)方法三:有一组对边平行且相等的四边形是平行四边形.
即若AB=CD,AB∥CD,或AD=BC,AD∥BC,则四边形ABCD是□.
(4)方法四:对角线互相平分的四边形是平行四边形.
即若OA=OC,OB=OD,则四边形ABCD是□.
(5)方法五:两组对角分别相等的四边形是平行四边形
若∠ABC=∠ADC,∠BAD=∠BCD,则四边形ABCD是□.
母题精讲
【典例1】(2022•烟台)一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是( )
A.正方形B.正六边形C.正八边形D.正十边形
【典例2】(2021•桂林)如图,在平行四边形ABCD中,点O是对角线BD的中点,EF过点O,交AB于点E,交CD于点F.
(1)求证:∠1=∠2;
(2)求证:△DOF≌△BOE.
【典例3】(2022•广西)如图,在▱ABCD中,BD是它的一条对角线.
(1)求证:△ABD≌△CDB;
(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);
(3)连接BE,若∠DBE=25°,求∠AEB的度数.
【典例4】(2021•北京)如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE∥DC,EF⊥AB,垂足为F.
(1)求证:四边形AECD是平行四边形;
(2)若AE平分∠BAC,BE=5,csB=,求BF和AD的长.
真题精选
命题点1 平行四边形的性质及判定
1.(2022•内江)如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为( )
A.2B.4C.6D.8
2.(2022•湘潭)在▱ABCD中(如图),连接AC,已知∠BAC=40°,∠ACB=80°,则∠BCD=( )
A.80°B.100°C.120°D.140°
3.(2022•梧州)如图,在▱ABCD中,E,G,H,F分别是AB,BC,CD,DA上的点,且BE=DH,AF=CG.求证:EF=HG.
4.(2020•长春)如图,在▱ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为点E、F.
(1)求证:OE=OF.
(2)若BE=5,OF=2,求tan∠OBE的值.
5.(2020•广元)已知▱ABCD,O为对角线AC的中点,过O的一条直线交AD于点E,交BC于点F.
(1)求证:△AOE≌△COF;
(2)若AE:AD=1:2,△AOE的面积为2,求▱ABCD的面积.
命题点2 多边形及其性质
6.(2022•通辽)正多边形的每个内角为108°,则它的边数是( )
A.4B.6C.7D.5
7.(2022•甘肃)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为( )
A.2mmB.2mmC.2mmD.4mm
8.(2021•福建)如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于( )
A.108°B.120°C.126°D.132°
9.(2022•菏泽)如果正n边形的一个内角与一个外角的比是3:2,则n= .
10.(2021•镇江)如图,花瓣图案中的正六边形ABCDEF的每个内角的度数是 .
1.多边形的相关概念
(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.
(2)对角线:从n边形的一个顶点可以引(n-3)条对角线,并且这些对角线把多边形分成了(n-2)个三角形;n边形对角线条数为.
2.多边形的内角和、外角和
(1) 内角和:n边形内角和公式为(n-2)·180°
(2)外角和:任意多边形的外角和为360°.
3.正多边形
(1)定义:各边相等,各角也相等的多边形.
(2)正n边形的每个内角为,每一个外角为360°/n.
( 3 ) 正n边形有n条对称轴.
(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.
相关试卷
这是一份中考数学一轮复习知识梳理+考点精讲专题31 统计和概率(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题31统计和概率原卷版doc、中考数学一轮复习知识梳理+考点精讲专题31统计和概率解析版doc等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
这是一份中考数学一轮复习知识梳理+考点精讲专题29 视图与投影(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题29视图与投影原卷版doc、中考数学一轮复习知识梳理+考点精讲专题29视图与投影解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份中考数学一轮复习知识梳理+考点精讲专题28 尺规作图(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题28尺规作图原卷版doc、中考数学一轮复习知识梳理+考点精讲专题28尺规作图解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。