中考数学一轮复习知识梳理+考点精讲专题24 正方形的性质与判定(2份,原卷版+解析版)
展开
这是一份中考数学一轮复习知识梳理+考点精讲专题24 正方形的性质与判定(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题24正方形的性质与判定原卷版doc、中考数学一轮复习知识梳理+考点精讲专题24正方形的性质与判定解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
以正方形为载体的中考题,往往以基础知识、基本技能、基本数学思想和基础数学活动经验为依托,考查考生运用基础知识分析、解决问题的能力。
考标要求
1.掌握正方形的概念、判定和性质,会用正方形的性质和判;
2.会运用正方形的知识解决有关正方形定解决简单问题问题。
考点精讲
考点1:正方形的定义
四条边都相等,四个角都是直角的四边形叫做正方形.
考点2:正方形的性质:
1、正方形具有平行四边形和菱形的所有性质。
2、正方形的四个角都是直角,四条边都相等。
3、正方形对边平行且相等。
4、正方形的对角线互相垂直平分且相等,对角线平分对角;
5、正方形的两条对角线把正方形分成四个全等的等腰直角三角形;6、正方形既是中心对称图形,也是轴对称图形.
考点3:正方形的判定:
1)有一个角是直角的菱形是正方形;
2)对角线相等的菱形是正方形;
3)一组邻边相等的矩形是正方形;
4)对角线互相垂直的矩形是正方形;
5)对角线互相垂直平分且相等的四边形是正方形;
6)四条边都相等,四个角都是直角的四边形是正方形.
正方形的面积公式:面积=边长×边长=对角线×对角线
母题精讲
【典例1】(2021•德州)如图,点E,F分别在正方形ABCD的边AB,AD上,且AE=DF,点G,H分别在边AB,BC上,且FG⊥EH,垂足为P.
(1)求证:FG=EH;
(2)若正方形ABCD边长为5,AE=2,tan∠AGF=,求PF的长度.
【解答】(1)证明:∵四边形ABCD是正方形,
∴AD=AB,∠A=∠B=90°,
∴∠AGF+∠AFG=90°,
∵FG⊥EH,
∴∠AGF+∠GEP=90°,
∴∠AFG=∠GEP=∠BEH,
∵AE=DF,
∴AD﹣DF=AB﹣AE,
即AF=BE,
在△AFG和△BEH中,
,
∴△AFG≌△BEH(ASA),
∴FG=EH;
(2)解:∵AD=5,AE=DF=2,
∴AF=5﹣2=3,
在Rt△AFG中,tan∠AGF=,
即=,
∴AG=4,
∴EG=2,
在Rt△AFG中,FG===5,
∵∠A=∠EPG=90°,∠AGF=∠PGE,
∴△AFG∽△PEG,
∴=,
即=,
∴PG=,
∴PF=FG﹣PG=5﹣=.
【变式1-1】(2022•随州)如图,在平行四边形ABCD中,点E,F分别在边AB,CD上,且四边形BEDF为正方形.
(1)求证:AE=CF;
(2)已知平行四边形ABCD的面积为20,AB=5,求CF的长.
【解答】(1)证明:∵四边形BEDF为正方形,
∴DF=EB,
∵四边形ABCD是平行四边形,
∴DC=AB,
∴DC﹣DF=AB﹣EB,
∴CF=AE,
即AE=CF;
(2)解:∵平行四边形ABCD的面积为20,AB=5,四边形BEDF为正方形,
∴5DE=20,DE=EB,
∴DE=EB=4,
∴AE=AB﹣EB=5﹣4=1,
由(1)知:AE=CF,
∴CF=1.
【变式1-2】(2022•贵阳)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.
(1)求证:△ABE≌△FMN;
(2)若AB=8,AE=6,求ON的长.
【解答】解:(1)∵四边形ABCD为正方形,
∴AB=AD,AB∥CD,∠A=∠D=90°,
又∵MF∥AD,
∴四边形AMFD为矩形,
∴∠MFD=∠MFN=90°,
∴AD=MF,
∴AB=MF,
∵BE的垂直平分线交AB于点M,交CD于点N,垂足为O,
∴∠MFN=∠BAE=90°,∠FMN+∠BMO=∠BMO+∠MBO=90°,
∴∠FMN=∠MBO,
在△ABE和△FMN中,
∴△ABE≌△FMN(ASA);
(2)∵∠MOB=∠A=90°,∠ABE是公共角,
∴△BOM∽△BAE,
∴OM:AE=BO:BA,
∵AB=8,AE=6,
∴BE==10,
∴OM:6=5:8,
∴OM=,
∵△ABE≌△FMN,
∴NM=BE=10,
∴ON=MN﹣MO=.
【典例2】(2021•兴安盟)如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,连接EF,EF与AD相交于点H.
(1)求证:AD⊥EF;
(2)△ABC满足什么条件时,四边形AEDF是正方形?说明理由.
【解答】(1)证明:∵AD是△ABC的角平分线,
∴∠EAD=∠FAD,
∵DE⊥AB,DF⊥AC,
∴∠AED=∠AFD=90°,
在△AED与△AFD中,
,
∴△AED≌△AFD(AAS),
∴AE=AF,
∴AD⊥EF;
(2)解:△ABC满足∠BAC=90°时,四边形AEDF是正方形,
理由:∵∠AED=∠AFD=∠BAC=90°,
∴四边形AEDF是矩形,
∵EF⊥AD,
∴矩形AEDF是正方形.
【变式2】(2022•邵阳)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.
求证:四边形AECF是正方形.
【解答】证明:∵四边形ABCD是菱形,
∴AC⊥BD,OA=OC,OB=OD,
∵BE=DF,
∴OE=OF,
∴四边形AECF是菱形;
∵OE=OA=OF,
∴OE=OF=OA=OC,即EF=AC,
∴菱形AECF是正方形.
真题精选
命题点1 正方形的判定
1.(2021•娄底)如图,点E、F在矩形ABCD的对角线BD所在的直线上,BE=DF,则四边形AECF是( )
A.平行四边形B.矩形C.菱形D.正方形
【答案】A
【解答】解:A.∵四边形ABCD是矩形,
∴AO=CO,BO=DO,
∵BE=DF,
∴EO=FO,
∴四边形AECF是平行四边形,
故本选项符合题意;
B.∵四边形ABCD是矩形,
∴AC=BD,
∴AC≠EF,
∴四边形AECF不是矩形,
故本选项不符合题意;
C.∵四边形ABCD是矩形,
∴不能证明AC⊥BD,
∴不能证明AC⊥EF,
故本选项不符合题意;
D.∵四边形ABCD是矩形,
∴AC=BD,
∴AC≠EF,
∴四边形AECF不是正方形,
故本选项不符合题意;
故选:A.
2.(2022秋•漳州期末)如图,在矩形ABCD中,对角线AC、BD交于点O,添加下列一个条件,能使矩形ABCD成为正方形的是( )
A.BD=ACB.DC=ADC.∠AOB=60°D.OD=CD
【答案】B
【解答】解:要使矩形成为正方形,可根据正方形的判定定理解答:
(1)有一组邻边相等的矩形是正方形,
(2)对角线互相垂直的矩形是正方形.
∴添加DC=AD,能使矩形ABCD成为正方形.
故选:B.
3.(2022春•东莞市期中)下列给出的条件中,不能判断▱ABCD是正方形的是( )
A.AC=BD,AD=ABB.AD=AB,∠A=90°
C.AC=BD,AC⊥BDD.AC⊥BD,AD=AB
【答案】D
【解答】解:A、对角线相等的平行四边形为矩形,一组邻边相等的平行四边形是菱形,所以能判断四边形ABCD是正方形;
B、根据一个角是直角的平行四边形是矩形,且有一组邻边相等,所以能判断四边形ABCD是正方形;
C、对角线相等的平行四边形为矩形,对角线互相垂直的平行四边形是菱形,所以能判断四边形ABCD是正方形;
D、只能证明四边形ABCD是菱形,不能判断四边形ABCD是正方形.
故选:D.
4.(2021•玉林)一个四边形顺次添加下列条件中的三个条件便得到正方形:
a.两组对边分别相等
b.一组对边平行且相等
c.一组邻边相等
d.一个角是直角
顺次添加的条件:①a→c→d②b→d→c③a→b→c
则正确的是( )
A.仅①B.仅③C.①②D.②③
【答案】C
【解答】解:①由a得到两组对边分别相等的四边形是平行四边形,添加c即一组邻边相等的平行四边形是菱形,再添加d即一个角是直角的菱形是正方形,故①正确;
②由b得到一组对边平行且相等的四边形是平行四边形,添加d即有一个角是直角的平行四边形是矩形,再添加c即一组邻边相等的矩形是正方形,故②正确;
③由a得到两组对边分别相等的四边形是平行四边形,添加b得到一组对边平行且相等的平行四边形仍是平行四边形,再添加c即一组邻边相等的平行四边形是菱形,不能得到四边形是正方形,故③不正确;
故选:C.
命题点2 正方形的性质及其应用
5.(2022•什邡市校级二模)如图,四边形ABCD是平行四边形,下列结论中错误的是( )
A.当▱ABCD是矩形时,∠ABC=90°
B.当▱ABCD是菱形时,AC⊥BD
C.当▱ABCD是正方形时,AC=BD
D.当▱ABCD是菱形时,AB=AC
【答案】D
【解答】解:因为矩形的四个角是直角,
故A正确,
因为菱形的对角线互相垂直,
故B正确,
因为正方形的对角线相等,
故C正确,
菱形的对角线和边长不一定相等,
例如:∠ABC=80°,因为AB=BC,所以∠BAC=∠ACB=50°,此时AC>AB,
故选:D.
6.(2022春•河西区期末)如图,点E,F,P,Q分别是正方形ABCD的四条边上的点,并且AF=BP=CQ=DE,则下列结论不一定正确的是( )
A.∠AFP=∠BPQ
B.EF∥QP
C.四边形EFPQ是正方形
D.四边形PQEF的面积是四边形ABCD面积的一半
【答案】D
【解答】解:∵四边形ABCD是正方形,
∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,
∵AF=BP=CQ=DE,
∴DF=CE=BQ=AP,
∴△APF≌△DFE≌△CEQ≌△BQP(SAS),
∴EF=FP=PQ=QE,∠AFP=∠BPQ,故A选项正确,不符合题意;
∵EF=FP=PQ=QE,
∴四边形EFPQ是菱形,
∴EF∥PQ,故B选项正确,不符合题意;
∵△APF≌△BQP,
∴∠AFP=∠BPQ,
∵∠AFP+∠APF=90°,
∴∠APF+∠BPQ=90°,
∴∠FPQ=90°,
∴四边形EFPQ是正方形.故C选项正确,不符合题意;
∵四边形PQEF的面积=EF2,四边形ABCD面积=AB2,
若四边形PQEF的面积是四边形ABCD面积的一半,
则EF2=AB2,即EF=AB.
若EF≠AB,则四边形PQEF的面积不是四边形ABCD面积的一半,
故D选项不一定正确,符合题意.
故选:D.
7.(2020•湘西州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.
(1)求证:△BAE≌△CDE;
(2)求∠AEB的度数.
【解答】(1)证明:∵△ADE为等边三角形,
∴AD=AE=DE,∠EAD=∠EDA=60°,
∵四边形ABCD为正方形,
∴AB=AD=CD,∠BAD=∠CDA=90°,
∴∠EAB=∠EDC=150°,
在△BAE和△CDE中
,
∴△BAE≌△CDE(SAS);
(2)∵AB=AD,AD=AE,
∴AB=AE,
∴∠ABE=∠AEB,
∵∠EAB=150°,
∴∠AEB=(180°﹣150°)=15°.
8.(2022•雅安)如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.
(1)求证:△ABE≌△CDF;
(2)若AB=3,BE=2,求四边形AECF的面积.
【解答】(1)证明:∵四边形ABCD为正方形,
∴CD=AB,∠ABE=∠CDF=45°,
又∵BE=DF,
∴△ABE≌△CDF(SAS).
(2)解:连接AC,交BD于点O,
∵四边形ABCD是正方形,
∴AC⊥BD,AO=CO,DO=BO,
又∵DF=BE,
∴OE=OF,AO=CO,
∴四边形AECF是平行四边形,
∵AC⊥EF,
∴四边形AECF是菱形,
∵AB=3,
∴AC=BD=6,
∵BE=DF=2,
∴四边形AECF的面积=AC•EF=×6×2=6.
9.(2021•梧州)如图,在正方形ABCD中,点E,F分别为边BC,CD上的点,且AE⊥BF于点P,G为AD的中点,连接GP,过点P作PH⊥GP交AB于点H,连接GH.
(1)求证:BE=CF;
(2)若AB=6,BE=BC,求GH的长.
【解答】(1)证明:∵AE⊥BF,∠ABE=90°,
∴∠EAB+∠ABF=90°,∠ABF+∠CBF=90°,
∴∠EAB=∠CBF,
在△ABE与△BCF中,
,
∴△ABE≌△BCF(ASA),
∴BE=CF;
(2)∵∠EAB=∠CBF,
∴∠GAE=∠PBH,
∵PH⊥GP,
∴∠GPH=90°,
∵∠APB=90°,
∴∠GPA+∠APH=∠APH+∠HPB,
∴∠GPA=∠HPB,
∴△GPA∽△HPB,
∴,
∵tan∠EAB=,
∵BE=BC,
∴=3,
∵G为AD的中点,
∴AG=3,
∴HB=1,
∴AH=5,
∴GH==.
相关试卷
这是一份中考数学一轮复习知识梳理+考点精讲专题31 统计和概率(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题31统计和概率原卷版doc、中考数学一轮复习知识梳理+考点精讲专题31统计和概率解析版doc等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
这是一份中考数学一轮复习知识梳理+考点精讲专题29 视图与投影(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题29视图与投影原卷版doc、中考数学一轮复习知识梳理+考点精讲专题29视图与投影解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份中考数学一轮复习知识梳理+考点精讲专题28 尺规作图(2份,原卷版+解析版),文件包含中考数学一轮复习知识梳理+考点精讲专题28尺规作图原卷版doc、中考数学一轮复习知识梳理+考点精讲专题28尺规作图解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。