2024年湖北省宜昌市中考数学模拟试卷(原卷版)
展开
这是一份2024年湖北省宜昌市中考数学模拟试卷(原卷版),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1. 下列说法正确的个数是( )
①-2022的相反数是2022;②-2022的绝对值是2022;③的倒数是2022.
A. 3B. 2C. 1D. 0
2. 将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是( )
A. B. C. D.
3. 我市围绕创建全国文明典范城市、传承弘扬屈原文化,组织开展了“喜迎二十大、永远跟党走、奋进新征程”等系列活动.在2024年“书香宜昌·全民读书月”暨“首届屈原文化月”活动中,100多个社区图书室、山区学校、农家书屋、“护苗”工作站共获赠了价值100万元的红色经典读物、屈原文化优秀读物和智能书柜.“100万”用科学记数法表示为( )
A. B. C. D.
4. 下列运算错误的是( )
A. B. C. D.
5. 已知经过闭合电路的电流(单位:)与电路的电阻(单位:)是反比例函数关系.根据下表判断和的大小关系为( )
A. B. C. D.
6. 如图,在中,分别以点和点为圆心,大于长为半径画弧,两弧相交于点,.作直线,交于点,交于点,连接.若,,,则的周长为( )
A. 25B. 22C. 19D. 18
7. 如图,四边形内接于,连接,,,若,则( )
A. B. C. D.
8. 五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( )
A. 30B. 26C. 24D. 22
9. 如图是小强散步过程中所走的路程(单位:)与步行时间(单位:)的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为( )
A. B. C. D.
10. 如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为.若小丽的座位为,以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是( )
A. B. C. D.
11. 某校团支部组织部分共青团员开展学雷锋志愿者服务活动,每个志愿者都可以从以下三个项目中任选一项参加:①敬老院做义工;②文化广场地面保洁;③路口文明岗值勤.则小明和小慧选择参加同一项目的概率是( )
A. B. C. D.
二、填空题(将答案写在答题卡上指定的位置.每题3分,计12分)
12. 中国是世界上首先使用负数的国家.两千多年前战国时期李悝所著的《法经》中已出现使用负数的实例.《九章算术》的“方程”一章,在世界数学史上首次正式引入负数及其加减法运算法则,并给出名为“正负术”的算法.请计算以下涉及“负数”的式子的值:________.
13. 如图,点,,都在方格纸的格点上,绕点顺时针方向旋转后得到,则点运动的路径的长为______.
14. 如图,岛在A岛的北偏东方向,岛在岛的北偏西方向,则的大小是_____.
15. 如图,在矩形中,是边上一点,,分别是,的中点,连接,,,若,,,矩形的面积为________.
三、解答题(将解答过程写在答题卡上指定的位置.本大题共有9题,计75分)
16. 求代数式的值,其中.
17. 解不等式,并数轴上表示解集.
18. 某校为响应“传承屈原文化·弘扬屈原精神”主题阅读倡议,进一步深化全民阅读和书香宜昌建设,随机抽取了八年级若干名学生,对“双减”后学生周末课外阅读时间进行了调查.根据收集到数据,整理后得到下列不完整的图表:
请你根据图表中提供的信息,解答下面的问题:
(1)扇形统计图中,120~150分钟时间段对应扇形的圆心角的度数是_______;_______;样本数据的中位数位于________~________分钟时间段;
(2)请将表格补充完整;
(3)请通过计算估计该校八年级学生周末课外平均阅读时间.
19. 石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长),设所在圆的圆心为,半径,垂足为.拱高(弧的中点到弦的距离).连接.
(1)直接判断与的数量关系;
(2)求这座石拱桥主桥拱的半径(精确到).
20. 知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角一般要满足.如图,现有一架长的梯子斜靠在一竖直的墙上.
(1)当人安全使用这架梯子时,求梯子顶端与地面距离的最大值;
(2)当梯子底端距离墙面时,计算等于多少度?并判断此时人是否能安全使用这架梯子?
(参考数据:,,,,,,,,)
21. 已知菱形中,是边的中点,是边上一点.
(1)如图1,连接,.,.
①求证:;
②若,求的长;
(2)如图2,连接,.若,,求的长.
22. 某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.
(1)求4月份再生纸的产量;
(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加.5月份每吨再生纸的利润比上月增加,则5月份再生纸项目月利润达到66万元.求的值;
(3)若4月份每吨再生纸利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了.求6月份每吨再生纸的利润是多少元?
23. 已知,在中,,,以为直径的与交于点,将沿射线平移得到,连接.
(1)如图1,与相切于点.
①求证:;
②求的值;
(2)如图2,延长与交于点,将沿折叠,点的对称点恰好落在射线上.
①求证:;
②若,求的长.
24. 已知抛物线与轴交于,两点,与轴交于点.直线由直线平移得到,与轴交于点.四边形的四个顶点的坐标分别为,,,.
(1)填空:______,______;
(2)若点在第二象限,直线与经过点双曲线有且只有一个交点,求的最大值;
(3)当直线与四边形、抛物线都有交点时,存在直线,对于同一条直线上的交点,直线与四边形的交点的纵坐标都不大于它与抛物线的交点的纵坐标.
①当时,直接写出取值范围;
②求的取值范围.
5
…
…
…
…
…
1
20
30
40
50
60
70
80
90
100
时间段/分钟
组中值
75
105
135
频数/人
6
20
4
相关试卷
这是一份2024年湖北省宜昌市中考数学模拟试卷(原卷版),共8页。
这是一份2024年湖北省宜昌市中考数学模拟试卷(解析版),共31页。
这是一份2024年湖北省宜昌市中考数学模拟试题(原卷版),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。