![2024年山东省青岛市中考数学模拟试卷(解析版)第1页](http://www.enxinlong.com/img-preview/2/3/16631625/0-1736901804776/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年山东省青岛市中考数学模拟试卷(解析版)第2页](http://www.enxinlong.com/img-preview/2/3/16631625/0-1736901804813/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年山东省青岛市中考数学模拟试卷(解析版)第3页](http://www.enxinlong.com/img-preview/2/3/16631625/0-1736901804827/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年山东省青岛市中考数学模拟试卷(解析版)
展开
这是一份2024年山东省青岛市中考数学模拟试卷(解析版),共29页。
说明:
1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共25题.第Ⅰ卷为选择题,共8小题,24分;第Ⅱ卷为填空题,作图题、解答题,共17小题,96分.
2.所有题目均在答题卡上作答,在试题上作答无效.
第Ⅰ卷(共24分)
一、选择题(本大题共8小题,每小题3分,共24分)
1. 我国古代数学家祖冲之推算出的近似值为,它与的误差小于0.0000003.将0.0000003用科学记数法可以表示为( )
A. B. C. D.
【答案】A
【解析】
【分析】绝对值较小的数的科学记数法的一般形式为:a×10-n,在本题中a应为3,10的指数为-7.
【详解】解:0.0000003
故选A
【点睛】本题考查的是用科学记数法表示绝对值较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数决定.
2. 北京冬奥会和冬残奥会组委会收到来自全球的会徽设计方案共4506件,其中很多设计方案体现了对称之美.以下4幅设计方案中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出.
【详解】解:A、既不轴对称图形,又不是中心对称图形,该选项不符合题意;
B、不是轴对称图形,是中心对称图形,该选项不符合题意;
C、既是轴对称图形,又是中心对称图形,该选项符合题意;
D、是轴对称图形,不是中心对称图形,该选项不符合题意;
故选:C.
【点睛】此题主要考查了中心对称图形与轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3. 计算的结果是( )
A. B. 1C. D. 3
【答案】B
【解析】
【分析】把括号内的每一项分别乘以 再合并即可.
【详解】解:
故选:B.
【点睛】本题考查是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.
4. 如图①.用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是( )
A. B. C. D.
【答案】C
【解析】
【分析】根据几何体的俯视图是从上面看进行判断解答即可.
【详解】解:由图可知,该“堑堵”的俯视图是 ,
故选:C.
【点睛】本题考查几何体的俯视图,理解俯视图的概念是解答的关键.
5. 如图,正六边形内接于,点M在上,则的度数为( )
A. B. C. D.
【答案】D
【解析】
【分析】先求出正六边形的中心角,再利用圆周角定理求解即可.
【详解】解:连接OC、OD、OE,如图所示:
∵正六边形内接于,
∴∠COD= =60°,则∠COE=120°,
∴∠CME= ∠COE=60°,
故选:D.
【点睛】本题考查正多边形的中心角、圆周角定理,熟练掌握正n多边形的中心角为是解答的关键.
6. 如图,将先向右平移3个单位,再绕原点O旋转,得到,则点A的对应点的坐标是( )
A. B. C. D.
【答案】C
【解析】
【分析】先画出平移后的图形,再利用旋转的性质画出旋转后的图形即可求解.
【详解】解:先画出△ABC平移后的△DEF,再利用旋转得到△A'B'C',
由图像可知A'(-1,-3),
故选:C.
【点睛】本题考查了图形的平移和旋转,解题关键是掌握绕原点旋转的图形的坐标特点,即对应点的横纵坐标都互为相反数.
7. 如图,O为正方形对角线的中点,为等边三角形.若,则的长度为( )
A. B. C. D.
【答案】B
【解析】
【分析】利用勾股定理求出AC的长度,再利用等边三角形的性质即可解决问题.
【详解】在正方形中:,
∴,
∵O为正方形对角线的中点,
∴,
∵为等边三角形, O为的中点,
∴,,
∴,
∴,
故选:B.
【点睛】此题考查了正方形的性质,勾股定理,等边三角形的性质,掌握以上知识点是解题的关键.
8. 已知二次函数的图象开口向下,对称轴为直线,且经过点,则下列结论正确的是( )
A. B. C. D.
【答案】D
【解析】
【分析】图象开口向下,得a0,
∴m=1;
【小问2详解】
解:由(1)知二次函数y=x2+x−2,
∵Δ=b2−4ac=12+8=9>0,
∴二次函数y=x2+x−2的图象与x轴有两个交点.
【点睛】此题主要考查了抛物线与x轴的交点以及一元二次方程的解法,得出△的值是解题关键.
19. 如图,为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A处时,某艘海上观光船位于小宇北偏东的点C处,观光船到滨海大道的距离为200米.当小宇沿滨海大道向东步行200米到达点E时,观光船沿北偏西的方向航行至点D处,此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D处的距离.(参考数据:,,,,,)
【答案】观光船从C处航行到D处的距离为米
【解析】
【分析】过点C作于点F,根据题意利用正切函数可得,由矩形的判定和性质得出,结合图形利用锐角三角函数解三角形即可.
【详解】解:过点C作于点F,
由题意得,,
在中,,
∵
∴
∴
∵
∴四边形为矩形
∴.
在中,
∵
∴
答:观光船从C处航行到D处的距离为米.
【点睛】题目主要考查解三角形的应用,理解题意,找准各角之间的关系,利用锐角三角函数解三角形是解题关键.
20. 孔子曾说:“知之者不如好之者,好之者不如乐之者.”兴趣是最好的老师,阅读、书法、绘画、手工、烹饪、运动、音乐……各种兴趣爱好是打并创新之门的金钥匙.某校为了解学生兴趣爱好情况,组织了问卷调查活动,从全校2200名学生中随机抽取了200人进行调查,其中一项调查内容是学生每周自主发展兴趣爱好的时长.对这项调查结果使用画“正”字的方法进行初步统计,得到下表:
学生每周自主发展兴趣爱好时长分布统计表
根据以上信息,解答下列问题:
(1)补全频数直方图;
(2)这200名学生每周自主发展兴趣爱好时长的中位数落在第__________组;
(3)若将上述调查结果绘制成扇形统计图,则第二组的学生人数占调查总人数的百分比为__________,对应的扇形圆心角的度数为__________;
(4)学校倡议学生每周自主发展兴趣爱好时长应不少于,请你估计,该校学生中有多少人需要增加自主发展兴趣爱好时间?
【答案】(1)图见解析
(2)三 (3)30%,108
(4)330人
【解析】
【分析】(1)根据频数分布表补全图形即可;
(2)根据中位数的定义,中间的一个数或两个数的平均数求出中位数;
(3)根据百分比=该组频数÷总数,圆心角百分比,即可得出答案;
(4)用2200乘以第一组所占百分比即可得出答案.
【小问1详解】
解:学生每周自主发展兴趣爱好时长频数直方图:
【小问2详解】
∵总人数为200人,
∴中位数落在第100、101个学生每周自主发展兴趣爱好的时长的平均数,
又∵30+60=90<100,30+60+70=160>101,
∴中位数落在第三组,
故答案为:三;
【小问3详解】
第二组的学生人数占调查总人数的百分比为:
第二组的学生人数对应的扇形圆心角的度数为:
故答案为:30%,108;
【小问4详解】
估计该校需要增加自主发展兴趣爱好时间的人数为:(人)
答:估计该校有330人需要增加自主发展兴趣爱好时间.
【点睛】本题考查频数及频率的应用,熟练掌握频数及频率的意义及应用、频数分布直方图的画法及一定的数据分析方法是解题关键.
21. 【图形定义】
有一条高线相等的两个三角形称为等高三角形.
例如:如图①.在和中,分别是和边上的高线,且,则和是等高三角形.
【性质探究】
如图①,用,分别表示和的面积.
则,
∵
∴.
【性质应用】
(1)如图②,D是的边上的一点.若,则__________;
(2)如图③,在中,D,E分别是和边上的点.若,,,则__________,_________;
(3)如图③,在中,D,E分别是和边上的点,若,,,则__________.
【答案】(1)
(2);
(3)
【解析】
【分析】(1)由图可知和是等高三角形,然后根据等高三角形的性质即可得到答案;
(2)根据,和等高三角形的性质可求得,然后根据和等高三角形的性质可求得;
(3)根据,和等高三角形的性质可求得,然后根据,和等高三角形的性质可求得.
【小问1详解】
解:如图,过点A作AE⊥BC,
则,
∵AE=AE,
∴.
【小问2详解】
解:∵和是等高三角形,
∴,
∴;
∵和是等高三角形,
∴,
∴.
【小问3详解】
解:∵和是等高三角形,
∴,
∴;
∵和是等高三角形,
∴,
∴.
【点睛】本题主要考查了等高三角形的定义、性质以及应用性质解题,熟练掌握等高三角形的性质并能灵活运用是解题的关键.
22. 如图,一次函数的图象与x轴正半轴相交于点C,与反比例函数的图象在第二象限相交于点,过点A作轴,垂足为D,.
(1)求一次函数的表达式;
(2)已知点满足,求a的值.
【答案】(1)
(2)或
【解析】
【分析】(1)将点A坐标代入反比例函数解析式求出m,得,由轴可得,进一步求出点,将A,C点坐标代入一次函数解析式,用待定系数法即可求出一次函数的解析式;
(2)由勾股定理求出AC的长,再根据且E在x轴上,分类讨论得a的值.
【小问1详解】
解:(1)∵点在反比例函数的图象上,
∴
∴
∵轴
∴
∴
∴
∴
∵点在一次函数的图象上
∴
解得
∴一次函数的表达式为.
【小问2详解】
在中,由勾股定理得,
∴
当点E在点C的左侧时,
当点E在点C的右侧时,
∴a的值为或.
【点睛】本题考查反比例函数图象上点的坐标特征、待定系数法求一次函数的解析式、勾股定理,熟练掌握反比例函数与一次函数的关系是解答本题的关键.
23. 如图,在四边形ABCD中,AB∥CD,点E,F在对角线BD上,BE=EF=FD,∠BAF=∠DCE=90°.
(1)求证:△ABF≌△CDE;
(2)连接AE,CF,已知__________(从以下两个条件中选择一个作为已知,填写序号),请判断四边形AECF的形状,并证明你的结论.
条件①:∠ABD=30°;
条件2:AB=BC.
(注:如果选择条件①条件②分别进行解答,按第一个解答计分)
【答案】(1)证明见解析
(2)见解析
【解析】
【分析】(1)利用AAS即可证明△ABF≌△CDE;
(2)若选择条件①:先证明四边形AECF是平行四边形,利用直角三角形斜边上的中线性质以及含30度角的直角三角形的性质证得AE=AF,即可证明平行四边形AECF是菱形.
若选择条件②:先证明四边形AECF是平行四边形,得到AO=CO,再根据等腰三角形的性质即可证明平行四边形AECF是菱形.
【小问1详解】
证明:∵BE=FD,
∴BE+EF=FD+EF,
即BF=DE,
∵AB∥CD,
∴∠ABF=∠CDE,
又∵∠BAF=∠DCE=90°,
∴△ABF≌△CDE(AAS);
【小问2详解】
解:若选择条件①:
四边形AECF是菱形,
由(1)得,△ABF≌△CDE,
∴AF=CE,∠AFB=∠CED,
∴AF∥CE,
∴四边形AECF是平行四边形,
∵∠BAF=90°,BE=EF,
∴AE=BF,
∵∠BAF=90°,∠ABD=30°,
∴AF=BF,
∴AE=AF,
∴平行四边形AECF是菱形.
若选择条件②:
四边形AECF是菱形,
连接AC交BD于点O,
由(1)得,△ABF≌△CDE,
∴AF=CE,∠AFB=∠CED,
∴AF∥CE,
∴四边形AECF是平行四边形,
∴AO=CO,
∵AB=BC,
∴BO⊥AC,
即EF⊥AC,
∴平行四边形AECF是菱形.
【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,菱形的判定,平行四边形的判定和性质,解题的关键是灵活运用所学知识解决问题.
24. 李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.
(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;
(2)若每天购进这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?
【答案】(1)且x为整数.
(2)李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.
【解析】
【分析】本题是通过构建函数模型解答销售利润的问题
(1)根据题意列出,得到结果.
(2)根据销售利润=销售量(售价-进价),利用(1)结果,列出销售利润w与x的函数关系式,即可求出最大利润.
【小问1详解】
解:由题意得
∴批发价y与购进数量x之间的函数关系式是,且x为整数.
【小问2详解】
解:设李大爷销售这种水果每天获得的利润为w元
则
∵
∴抛物线开口向下
∵对称轴是直线
∴当时,w的值随x值的增大而增大
∵x为正整数,∴此时,当时,
当时,w的值随x值的增大而减小
∵x为正整数,∴此时,当时,
∵
∴李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.
【点睛】本题考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利用二次函数的增减性来解答,解题关键是理解题意,确定变量,建立函数模型,然后结合实际选择最优方案进行解决.
25. 如图,在中,,将绕点A按逆时针方向旋转得到,连接.点P从点B出发,沿方向匀速运动,速度为;同时,点Q从点A出发,沿方向匀速运动,速度为.交于点F,连接.设运动时间为.解答下列问题:
(1)当时,求t的值;
(2)设四边形的面积为,求S与t之间的函数关系式;
(3)是否存在某一时刻t,使?若存在,求出t的值;若不存在,请说明理由.
【答案】(1)
(2)
(3)存在,
【解析】
【分析】(1)利用得,即,进而求解;
(2)分别过点C,P作,垂足分别为M,N,证得,,求得,再证得,得出,根据即可求出表达式;
(3)当时,易证,得出,则,进而求出t值.
【小问1详解】
解:在中,由勾股定理得,
∵绕点A按逆时针方向旋转得到
∴
∵
∴
又
∴
∴
∴
∴
答:当时,t的值为.
【小问2详解】
解:分别过点C,P作,垂足分别为M,N
∵
∴
又
∴
∴
∴
∴
∵
∴
∴
∴
∴
∴
∴
∴
【小问3详解】
解:假设存在某一时刻t,使
∵
∴
∵
∴
又
∴
∴
∴
∴
∴存在时刻,使.
【点睛】本题考查了旋转与相似,利用勾股定理求线段长,平行线的性质,根据旋转的性质,找到相似图形是解决问题的关键,是中考中的常考题.
乙
甲
1
2
3
4
5
1
2
组别
时长t(单位:h)
人数累计
人数
第一组
正正正正正正
30
第二组
正正正正正正正正正正正正
60
第三组
正正正正正正正正正正正正正正
70
第四组
正正正正正正正正
40
相关试卷
这是一份2024年山东省青岛市中考数学模拟试卷(解析版),共29页。
这是一份2024年山东省青岛市中考数学模拟试卷(含解析版),共33页。
这是一份2024年山东省青岛市中考数学模拟预测试卷解析,文件包含2024年山东省青岛市中考数学模拟预测试卷解析docx、2024年山东省青岛市中考数学模拟预测试卷参考答案docx、2024年山东省青岛市中考数学模拟预测试卷docx、2024年山东省青岛市中考数学模拟预测试卷答题卡docx等4份试卷配套教学资源,其中试卷共76页, 欢迎下载使用。