所属成套资源:2025高考数学二轮复习专辑-【课件】
2025高考数学二轮复习-专题检测2【课件】
展开
这是一份2025高考数学二轮复习-专题检测2【课件】,共47页。PPT课件主要包含了ACD,ABD,BCD等内容,欢迎下载使用。
1.(2024·北京房山一模)已知角α的终边经过点(3,4),把角α的终边绕原点O逆时针旋转 得到角β的终边,则sin β=( )
4.(2024·江苏南通三模)已知三个单位向量a,b,c满足a=b+c,则向量b,c的夹角为( )
5.(2024·四川绵阳三模)若函数f(x)=cs(πx+φ)的图象关于直线x=1对称,在下列选项中,( )不是f(x)的零点.
6.(2024·四川攀枝花三模)将函数y=sin2x-cs2x的图象向右平移m(m>0)个单位长度后得到的图象与y=sin 2x的图象关于原点对称,则m的最小值是( )
解析 令f(x)=sin2x-cs2x,则f(x)=-cs 2x.设f(x)向右平移m(m>0)个单位长度后得到函数g(x)的图象,则g(x)=-cs[2(x-m)]=-cs(2x-2m).因为g(x)的图象与y=sin 2x的图象关于原点对称,则有g(x)=-sin(-2x)=sin 2x,即-cs(2x-2m)=sin 2x,
8.(2024·黑龙江二模)“不以规矩,不能成方圆”中的“规”指圆规,“矩”指由相互垂直的长短两条直尺构成的方尺,今有一块圆形木板,按图中数据,以“矩”量之,若将这块圆形木板截成一块四边形形状的木板,且这块四边形木板的一个内角α满足cs α= ,则这块四边形木板周长的最大值为( )
9.(2024·安徽芜湖二模)在平面直角坐标系xOy中,角θ以坐标原点O为顶点,以x轴的非负半轴为始边,其终边经过点M(a,b),|OM|=m(m≠0),定义
对于D,f(θ)g(θ)=(sin θ+cs θ)(sin θ-cs θ)=sin2θ-cs2θ=-cs 2θ.因为y=cs 2θ为周期函数,故D正确.故选ACD.
11.(2024·山东潍坊二模)已知向量a,b,c为平面向量,|a|=1,|b|=2,a·b=0,|c-a|= ,则( )
12.(2024·广东茂名一模)如图,△ABC在边长为1的小正方形组成的网格中,
解析 如图,以点B为坐标原点,建立平面直角坐标系,则A(2,3),C(5,-2).
13.(2024·湖南长沙模拟)海边近似平直的海岸线上有两处码头A,B,且AB=3 km.现有一观光艇由B出发,同时在A处有一小艇出发向观光艇补充物资,其速度为观光艇的两倍,在M处成功拦截观光艇,完成补给.若两船都做匀速直线运动,观光艇行驶向海洋的方向任意的情况下,小艇总可以设定合适的出发角度,使得行驶距离最小,则拦截点M距离海岸线的最远距离为 .
14.(2024·广东佛山二模)如图所示,单位圆O绕圆心做逆时针匀速圆周运动,角速度大小为2π rad/s,圆上两点A,B始终满足∠AOB= ,随着圆O的旋转,A,B两点的位置关系呈现周期性变化.现定义:A,B两点的竖直距离为A,B两点相对于水平面的高度差的绝对值.假设运动开始时刻,即t=0 s时,点A位于圆心正下方,则t= s时,A,B两点的竖直距离第一次为0;A,B两点的竖直距离关于时间t(单位:s)的函数解析式为f(t)= .
解析 以O为原点,OA所在直线为y轴,建立平面直角坐标系,
由于角速度ω=2π rad/s,
15.(15分)(2024·北京平谷模拟)已知函数f(x)=sin 2xcs φ-cs 2xsin φ,其中|φ|< ,再从条件①、条件②、条件③这三个条件中选择一个作为已知条件,使f(x)存在,并完成下列两个问题.(1)求φ的值;
17.(15分)(2024·湖北武汉二模)已知△ABC的内角A,B,C的对边分别为a,b,c(a
相关课件
这是一份2025高考数学二轮复习-专题检测6【课件】,共44页。PPT课件主要包含了ACD等内容,欢迎下载使用。
这是一份2025高考数学二轮复习-专题检测3【课件】,共42页。PPT课件主要包含了BCD等内容,欢迎下载使用。
这是一份2025高考数学二轮复习-专题检测1【课件】,共42页。PPT课件主要包含了ABC,ABD,答案不唯一等内容,欢迎下载使用。