开学活动
搜索
    上传资料 赚现金

    7.1.1 两条直线相交 2025年春初中数学人教版七年级下册教案

    7.1.1 两条直线相交 2025年春初中数学人教版七年级下册教案第1页
    7.1.1 两条直线相交 2025年春初中数学人教版七年级下册教案第2页
    7.1.1 两条直线相交 2025年春初中数学人教版七年级下册教案第3页
    还剩8页未读, 继续阅读
    下载需要40学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版(2024)七年级下册(2024)7.1.1 两条直线相交教学设计及反思

    展开

    这是一份初中数学人教版(2024)七年级下册(2024)7.1.1 两条直线相交教学设计及反思,共11页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,板书设计等内容,欢迎下载使用。
    1.借助两直线相交所成的角初步理解邻补角、对顶角的概念.
    2.会根据邻补角、对顶角的性质去求一个角的度数.
    3.掌握邻补角与对顶角的性质,并能运用它们解决简单实际问题.
    二、课型
    新授课
    三、课时
    1课时
    四、教学重难点
    【教学重点】
    对顶角的性质.
    【教学难点】
    理解对顶角相等的性质的探索.
    五、课前准备
    教师:课件、三角尺、直尺等.
    学生:三角尺、铅笔.
    六、教学过程
    (一)导入新课
    同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?
    (二)探索新知
    1.出示课件7-12,探究邻补角与对顶角的定义
    教师问:如图,把两根木条,将它们钉在一起,转动其中一根木条,在这个过程中,他们所成的角也在变化,你能发现这些角之间不变的关系吗? 你能动手画出两条相交直线吗?
    学生答:能,作图如下:
    教师问:两条直线相交,形成几个角,其中小于平角的角有几个,是哪几个?
    学生答:两条直线相交,形成四个角,其中小于平角的角有四个 .
    分别是∠1,∠2,∠3,∠4.
    教师问:将这些角两两相配能得到几对角?
    教师依次展示学生答案:
    学生1答:∠1 和∠2.
    学生2答:∠2 和∠3.
    学生3答:∠3 和∠4.
    学生4答:∠4 和∠1.
    教师问:为何如此分类呢?
    学生答:有一条边在一条直线上,角的顶点相同.
    教师问:还有其他分类吗?
    学生答:
    分类如下:∠1 和∠3,∠2 和∠4.
    教师问:这样分的标准是什么?
    学生答:两边分别在一条直线上,有共同的顶点.
    总结点拨:
    教师问:观察∠1和∠2的顶点和两边,有怎样的位置关系?
    师生一起解答:
    如图,∠1与∠2有一条公共边OC,它们的另一边互为反向延长线(∠1与∠2 互补),具有这种位置关系的两个角,互为邻补角.
    教师问:类比∠1和∠2,看∠1和∠3有怎样的位置关系?
    学生答:这两个角的两边都在同一条直线上,有相同的顶点.
    教师总结:如图,∠1与∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.
    总结点拨:
    考点1:对顶角的判断
    下列各图中,∠1与∠2是对顶角的是( )
    师生共同讨论解答如下:
    解析:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.
    答案:D.
    学生自主练习后口答,教师订正.
    答案:(1)(2)(3)不是,(4)是.
    2.探究对顶角、邻补角的性质
    教师问:在上学期我们已经知道互为补角的两个角的和为180°,因而互为邻补角的两个角的和为180°.如图所示,∠1 与∠3在数量上又有什么关系呢?
    学生答:猜想:∠1 =∠3.
    教师问:你能利用学过的有关知识来验证∠1与∠3的数量关系吗?
    学生答:因为∠1+∠2=180°,∠3+∠2=180°,
    所以∠1=∠3.
    教师问:∠1与∠3互为什么角?
    学生答:互为对顶角.
    教师问:由此你能猜想对顶角有什么性质?
    学生答:猜想:对顶角相等.
    教师问:你能证明你的猜想吗?
    学生先独立思考,师生共同讨论后解答如下:
    师生一起解答:
    已知:直线AB与CD相交于O点(如图),
    求证:∠1=∠3, ∠2=∠4.
    证明:因为直线AB与CD相交于O点,
    所以∠1+∠2=180° ,∠2+∠3=180°,
    所以∠1=∠3.
    同理可得∠2=∠4.
    教师问:您能利用几何语言描述一下对顶角的性质吗?
    学生答:
    符号语言:
    因为直线AB与CD相交于O点,
    所以∠1=∠3,∠2=∠4.
    教师总结点拨:
    考点2:利用对顶角、邻补角的性质求角的度数
    如图,直线a,b相交,∠1=40°,求 ∠2,∠3,∠4的度数.
    学生独立思考后,师生共同解答.
    学生1解:由∠1和∠2互为邻补角,得
    ∠2=180°-∠1=180°-40°=140°.
    学生2解:由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.
    教师总结。
    教师出示课件20并问:若∠1= 32°20′,那么∠2,∠3,∠4的度数是多少?
    学生独立思考后,师生共同解答.
    教师:如图,若∠1+∠3 = 50°,则∠3,∠2的度数是多少?
    学生独立思考后,师生共同解答。
    答案:∠3=25°,∠2=155°
    教师问:若∠2是∠1的3倍,求∠3的度数.
    学生独立思考后,师生共同解答。
    答案:
    解:设∠1=x°,则∠2=3x°,
    由∠1和∠2互为邻补角,得 x+3x=180,
    所以 x=45,则∠1=45°,
    根据对顶角相等,可得∠3=∠1=45°.
    学生自主练习后口答,教师订正.
    考点3:利用隐含条件求角的度数
    如图,直线AB,CD,EF相交于点O,∠1=40°,∠BOC=110°,求∠2的度数.
    学生独立思考后,师生共同解答.
    解:因为∠1=40°,∠BOC=110°(已知),
    所以∠BOF=∠BOC-∠1 =110°-40°=70°.
    因为∠BOF=∠2(对顶角相等),
    所以∠2=70°(等量代换).
    总结点拨:隐含条件“对顶角相等”.
    学生自主练习,教师给出答案.
    教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧.
    (三)课堂练习
    练习,约用时20分钟.
    (四)课堂小结
    1.邻补角、对顶角的概念:
    (1)有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.
    (2)有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.
    (3)邻补角、对顶角是成对出现的,在相交直线中,一个角的邻补角有两个.
    2.邻补角、对顶角的性质:
    (1)邻补角互补.但两个和等于180°的角不一定是邻补角.
    (2)对顶角相等.但反过来,相等的两个角不一定是对顶角.
    3.邻补角、对顶角的相同点和不同点:
    相同点:
    (1)都是两条直线相交而成的角;
    (2)都有一个公共顶点;
    (3)都是成对出现的.
    不同点:
    (1)有无公共边;
    (2)两直线相交时,对顶角只有两对,邻补角有四对.
    (五)课前预习
    预习下节课(7.1.2第1课时)的相关内容.
    知道垂直、垂足、垂线的定义及其垂线的性质.
    课后作业
    教材第8页习题7.1第1,3,5题.
    八、板书设计:
    7.1.1 相交线
    1.邻补角与对顶角的概念
    2.对顶角的性质
    3.考点讲解
    考点1 考点2 考点3

    两直线相交
    分类
    位置关系
    ∠1 和∠2,
    ∠2 和∠3,
    ∠3 和∠4,
    ∠4 和∠1
    1.有公共顶点
    2.有一条公共边
    3.另一边互为反向延长线
    ∠1 和∠3,
    ∠2 和∠4.
    1.有公共顶点
    2.没有公共边
    3.两边互为反向延长线
    两直线相交
    分类
    位置关系
    定义
    ∠1 和∠2,
    ∠2 和∠3,
    ∠3 和∠4,
    ∠4 和∠1
    1.有公共顶点
    2.有一条公共边
    3.另一边互为反向延长线
    邻补角
    ∠1 和∠3,
    ∠2 和∠4.
    1.有公共顶点
    2.没有公共边
    3.两边互为反向延长线
    对顶角
    两直线相交
    分类
    位置关系
    名称
    数量关系
    ∠1 和∠2,
    ∠2 和∠3,
    ∠3 和∠4,
    ∠4 和∠1
    1.有公共顶点
    2.有一条公共边
    3.另一边互为反向延长线
    邻补角
    邻补角互补
    ∠1 和∠3,
    ∠2 和∠4.
    1.有公共顶点
    2.没有公共边
    3.两边互为反向延长线
    对顶角
    对顶角相等

    相关教案

    七年级下册(2024)7.1.3 两条直线被第三条直线所截教案设计:

    这是一份七年级下册(2024)7.1.3 两条直线被第三条直线所截教案设计,共12页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。

    初中数学人教版(2024)七年级下册(2024)7.1.1 两条直线相交教案:

    这是一份初中数学人教版(2024)七年级下册(2024)7.1.1 两条直线相交教案,共4页。教案主要包含了教学目标,教学重难点,教学过程设计等内容,欢迎下载使用。

    初中数学人教版(2024)七年级下册(2024)7.1.1 两条直线相交教学设计:

    这是一份初中数学人教版(2024)七年级下册(2024)7.1.1 两条直线相交教学设计,共7页。教案主要包含了教材分析,学情分析,教学目标,教学重难点,教学过程,板书设计,教学反思等内容,欢迎下载使用。

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map