所属成套资源:2020中考数学模拟试卷丨必考题丨预测卷(持续更新)
20届中考精英人教版数学专题总复习:专题三 简单的几何证明与计算
展开
专题三 简单的几何证明与计算 三角形全等【例1】 (2016·襄阳)如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.分析:(1)先证△DEB≌△DFC得∠B=∠C,由此即可证明;(2)先证AD⊥BC,再在Rt△ADC中,利用30°角性质设CD=a,AC=2a,根据勾股定理列出方程即可求解.解:(1)∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠DEB=∠DFC=90°,又∵BD=CD,∴Rt△DEB≌Rt△DFC(HL),∴∠B=∠C,∴AB=AC(2)∵AB=AC,BD=DC,∴AD⊥BC,在Rt△ADC中,∵∠ADC=90°,AD=2,∠DAC=30°,∴AC=2CD,设CD=a,则AC=2a,∵AC2=AD2+CD2,∴4a2=a2+(2)2,∵a>0,∴a=2,∴AC=2a=4 三角形相似【例2】 (2015·岳阳)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为点F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.分析:(1)由两角相等即可证明;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可求解.解:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA(2)∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴=,即=,∴AE=16.9,∴DE=AE-AD=4.9 特殊四边形【例3】 (2016·贺州)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)分析:(1)过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,由AAS可证△AOF≌△COE,可得AF=CE,由此即可证明;(2)由四边形ABCD是矩形,易求得CD的长,利用三角函数求得CF的长,即可求解.解:(1)∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,可证△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形(2)∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为EC·AB=2
1.(2016·呼和浩特)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.解:(1)∵△ACB和△ECD都是等腰直角三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,可证△ACE≌△BCD(SAS)(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45°.∵△ACE≌△BCD,∴∠B=∠CAE=45°,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2,即2CD2=AD2+DB2 2.(2016·齐齐哈尔)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.解:(1)∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BFD (2)∵tan∠ABD=1,∠ADB=90°,∴=1,∵△ACD∽△BFD,∴==1,∴BF=AC=3 3.(2016·济宁)如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知EO=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.解:(1)∵四边形ABCD是正方形,∴CA==BC.∵CF=CA,CE是∠ACF的角平分线,∴E是AF的中点.∵E,O分别是AF,AC的中点,∴EO∥BC,且EO=CF,∴CA=CF=2EO=2,∴BC=2,∴正方形ABCD的边长为2(2)EM=CN.证明:∵CE平分∠ACB,∴∠OCM=∠BCN,∵四边形ABCD是正方形,∴AC⊥BD,∠ABC=90°,∴∠COM=∠CBN=90°,∴△OCM∽△BCN,∴==.∵EO∥BC,∴△OEM∽△BCM,∴==,·=×=,∴=,即EM=CN1.(2016·大庆)如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG;(2)求证:AG2=GE·GF.解:(1)∵四边形ABCD是菱形,∴AB∥CD,AD=CD,∠ADB=∠CDB,可证△ADG≌△CDG(SAS),∴AG=CG(2)∵△ADG≌△CDG,∴∠EAG=∠DCG,∵AB∥CD,∴∠DCG=∠F,∴∠EAG=∠F,∵∠AGE=∠AGE,∴△AGE∽△FGA,∴=,∴AG2=GE·GF 2.(2016·内江)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.解:(1)∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,可证△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD,∴D是BC的中点(2)若AB=AC,则四边形AFBD是矩形.证明:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AFBD是矩形 3.(2016·北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)若∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.解:(1)在△CAD中,∵M,N分别是AC,CD的中点,∴MN∥AD,MN=AD,在Rt△ABC中,∵M是AC的中点,∴BM=AC,∵AC=AD,∴MN=BM(2)∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN= 4.(导学号 59042292)(2016·威海)如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF,延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.解:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=135°,∵∠BCD=90°,∴∠ACD=∠ACB+∠BCD=135°,∴∠ABF=∠ACD,∵CB=CD,CB=BF,∴BF=CD,可证△ABF≌△ACD(SAS),∴AD=AF(2)由(1)知AF=AD,△ABF≌△ACD,∴∠FAB=∠DAC,∵∠BAC=90°,∴∠EAB=∠BAC=90°,∴∠EAF=∠BAD,可证△AEF≌△ABD(SAS),∴BD=EF(3)四边形ABNE是正方形.理由如下:∵CD=CB,∠BCD=90°,∴∠CBD=45°,又∵∠ABC=45°,∴∠ABD=∠ABC+∠CBD=90°,由(2)知∠EAB=90°,△AEF≌△ABD,∴∠AEF=∠ABD=90°,∴四边形ABNE是矩形,又∵AE=AB,∴四边形ABNE是正方形 5.(导学号 59042293)(2016·泰安)如图,在四边形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中点,AD⊥AE.(1)求证:AC2=CD·BC;(2)过E作EG⊥AB,并延长EG至点K,使EK=EB.①若点H是点D关于AC的对称点,点F为AC的中点,求证:FH⊥GH;②若∠B=30°,求证:四边形AKEC是菱形.解:(1)∵AC平分∠BCD,∴∠DCA=∠ACB.又∵AC⊥AB,AD⊥AE,∴∠DAC+∠CAE=90°,∠CAE+∠EAB=90°,∴∠DAC=∠EAB.又∵E是BC的中点,∴AE=BE,∴∠EAB=∠ABC,∴∠DAC=∠ABC,∴△ACD∽△BCA,∴=,∴AC2=CD·BC(2)①连接AH.∵∠ADC=∠BAC=90°,点H,D关于AC对称,∴AH⊥BC.∵EG⊥AB,AE=BE,∴点G是AB的中点,∴HG=AG,∴∠GAH=∠GHA.∵点F为AC的中点,∴AF=FH,∴∠HAF=∠FHA,∴∠FHG=∠AHF+∠AHG=∠FAH+∠HAG=∠CAB=90°,∴FH⊥GH②∵EK⊥AB,AC⊥AB,∴EK∥AC,又∵∠B=30°,∴AC=BC=EB=EC.又EK=EB,∴EK=AC,∴四边形AKEC是平行四边形,又∵AC=EC,∴四边形AKEC是菱形