所属成套资源:2002-2019年深圳市数学中考真题分类汇编,共12个专题(含原卷版+解析版)
2002-2019年深圳市数学中考真题分类汇编:专题11 圆(解析版)
展开
1.(深圳2003年5分)如图,已知四边形ABCD是⊙O的内接四边形,且AB=CD=5,AC=7,BE=3,下列命题错误的是【 度002】A.△AED∽△BEC B.∠AEB=90º C.∠BDA=45º D.图中全等的三角形共有2对2.(深圳2004年3分)已知⊙O1的半径是3,⊙O2的半径是4,O1O2=8,则这两圆的位置关系是【 度002】A.相交 B.相切 C.内含 D.外离[来源:学.科.网Z.X.X.K]3.(深圳2004年3分)如图,⊙O的两弦AB、CD相交于点M,AB=8cm,M是AB的中点,CM:MD=1:4,则CD=【 度002】.4.(深圳2004年3分)圆内接四边形ABCD中,AC平分∠BAD,EF切圆于C,若∠BCD=120º,则∠BCE=【 度002】[来源:学科网ZXXK] 5.(深圳2005年3分)如图,AB是⊙O的直径,点D、E是半圆的三等分点,AE、BD的延长线交于点C,若CE=2,则图中阴影部分的面积是【 度002】6.(深圳2009年3分)如图,已知点A、B、C、D均在已知圆上,AD//BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为【 】度002】】 A. cm2 B. cm2 C. cm2 D. cm2 7.(2012广东深圳3分)如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BM0=120o,则⊙C的半径长为【 】8.(2015广东深圳3分)如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为( )A、50° B、20° C、60° D、70°【答案】D【解析】试题分析:根据AB为⊙O直径可得:∠ACB=90o,则∠ACD=∠ACB-∠DCB=90°-20°=70°,根据同弧所对的圆周角相等可得:∠DBA=∠ACD=70°.考点:圆的基本性质.学科&网1.(深圳2010年招生3分)下图中正比例函数与反比例函数的图象相交于A、B 两点,分别以A、B 两点为圆心,画与x 轴相切的两个圆,若点A(2 , 1) ,则图中两个阴影部分面积的和是 2.(深圳2011年3分)如图,在⊙O中,圆心角∠AOB=120º,弦AB=cm,则OA= cm.3.(2018年深圳中考)如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A. 3 B. C. D. 【答案】D【详解】如图,设光盘圆心为O,连接OC,OA,OB,∵AC、AB都与圆O相切,∴AO平分∠BAC,OC⊥AC,OB⊥AB,∴∠CAO=∠BAO=60°,∴∠AOB=30°,在Rt△AOB中,AB=3cm,∠AOB=30°,∴OA=6cm,根据勾股定理得:OB=3,则光盘的直径为6,故选D.【点睛】本题考查了切线的性质,切线长定理,含30°角的直角三角形的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.
1. (深圳2002年10分)阅读材料,解答问题命题:如图,在锐角△ABC中,BC=a、CA= b、AB=c,△ABC的外接圆半径为R,则。证明:连结CO并延长交⊙O于点D,连结DB,则∠D=∠A ∵CD为⊙O的直径,∴∠DBC=90º。 在Rt△DBC中, ∵,∴sinA=,即。同理、。∴ 请你阅读前面所给的命题及证明后,完成下面(1)、(2)两小题(1)前面的阅读材料中略去了“和”的证明过程,请你把“”的证明过程补写出来。(2)直接用前面阅读材料中命题的结论解题 已知,如图,在锐角△ABC中,BC=,CA=,∠A=60º,求△ABC的外接圆的半径R及∠C。2.(深圳2003年18分)如图,已知A(5,-4),⊙A与x 轴分别相交于点B、C,⊙A与y轴相且于点D,(1)求过D、B、C三点的抛物线的解析式;(2)连结BD,求tan∠BDC的值;(3)点P是抛物线顶点,线段DE是直径,直线PC与直线DE相交于点F,∠PFD的平分线FG交DC于G,求sin∠CGF的值。3.(深圳2008年8分)如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线.(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=,求△ACF的面积.4.(深圳2009年10分)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?[来源:学.科.网Z.X.X.K]5.(深圳2010年招生8分)如图,△ABC内接于半圆,AB是直径,过A作直线MN,若∠MAC=∠ABC,( 1 ) ( 2 分)求证:MN 是半圆的切线,( 2 ) ( 3 分)设D 是弧AC 的中点,连接BD交AC 于G , 过D 作DE⊥AB于E,交AC于F.求证:FD=FG..( 3 ) ( 3 分)若△DFG的面积为4.5 ,且DG=3,GC=4, 试求△BCG的面积.6.(深圳2011年8分)如图1,在⊙O中,点C为劣弧AB的中点,连接AC并延长至D,使CA=CD,连接DB并延长交⊙O于点E,连接AE.[来源:Z。xx。k.Com](1)求证:AE是⊙O的直径;(2)如图2,连接CE,⊙O的半径为5,AC长为4,求阴影部分面积之和.(保留与根号) [来源:学,科,网]7.(2017年深圳中考)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.【考点】MR:圆的综合题.【分析】(1)在Rt△COH中,利用勾股定理即可解决问题;(2)只要证明∠CMD=△COA,求出sin∠COA即可;(3)由△EHM∽△NHF,推出=,推出HE•HF=HM•HN,又HM•HN=AH•HB,推出HE•HF=AH•HB,由此即可解决问题.【解答】解:(1)如图1中,连接OC.∵AB⊥CD,∴∠CHO=90°,在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,∴r2=42+(r﹣2)2,∴r=5.(3)如图2中,连接AM.∵AB是直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵∠E+∠ABM=90°,∴∠E=∠MAB,∴∠MAB=∠MNB=∠E,∵∠EHM=∠NHFM∴△EHM∽△NHF,∴=,∴HE•HF=HM•HN,∵HM•HN=AH•HB,∴HE•HF=AH•HB=2•(10﹣2)=16.8.(2018年深圳中考)如图,△ABC内接于⊙O,,点为上的动点,且.(1)求的长度;(2)在点D运动的过程中,弦AD的延长线交BC的延长线于点E,问AD•AE的值是否变化?若不变,请求出AD•AE的值;若变化,请说明理由.(3)在点D的运动过程中,过A点作AH⊥BD,求证:.【答案】(1) ;(2) ;(3)证明见解析.(3)连接CD,延长BD至点N,使DN=CD,连接AN,通过证明△ADC≌△ADN,可得AC=AN,继而可得AB=AN,再根据AH⊥BN,即可证得BH=HD+CD.【详解】(1)过A作AF⊥BC,垂足为F,交⊙O于G,∵AB=AC,AF⊥BC,∴BF=CF=BC=1,在RtΔAFB中,BF=1,∴AB=;(3)连接CD,延长BD至点N,使DN=CD,连接AN,∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,∴∠ADC=∠ADN,∵AD=AD,CD=ND,∴△ADC≌△ADN,∴AC=AN,∵AB=AC,∴AB=AN,∵AH⊥BN,∴BH=HN=HD+CD.【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.