2019-2020学年广东省梅州市大埔县八年级(下)期末数学复习试卷 解析版
展开2019-2020学年广东省梅州市大埔县八年级(下)期末数学复习试卷
一.选择题(共10小题,满分30分,每小题3分)
1.下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2.若x>y,则下列式子中错误的是( )
A.x﹣3>y﹣3 B.> C.x+3>y+3 D.﹣3x>﹣3y
3.要使分式有意义,则字母x的取值范围是( )
A.x≠0 B.x<0 C.x>2 D.x≠2
4.不等式x<﹣2的解集在数轴上表示为( )
A. B.
C. D.
5.下列式子中,从左到右的变形是因式分解的是( )
A.(x﹣1)(x﹣2)=x2﹣3x+2 B.x2﹣3x+2=(x﹣1)(x﹣2)
C.x2+4x+4=x(x﹣4)+4 D.x2+y2=(x+y)(x﹣y)
6.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )
A.6 B.7 C.8 D.9
7.已知关于x的分式方程的解为正数,则k的取值范围为( )
A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1
8.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连接OE,若∠COE=30°,∠ADC=50°,则∠BAC=( )
A.80° B.90° C.100° D.110°
9.如图在平面直角坐标系中,□MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标是( )
A.(﹣3,﹣2) B.(﹣3,2) C.(﹣2,3) D.(2,3)
10.如图,▱ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD=AB,连接OE.下列结论:
①S▱ABCD=AD•BD;
②DB平分∠CDE;
③AO=DE;
④OE=AD;
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
二.填空题(共7小题,满分28分,每小题4分)
11.分解因式:1﹣x2= .
12.在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是 .
13.如图所示,BE⊥AC于点D,且AB=CB,BD=ED,若∠ABC=54°,则∠E= .
14.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值 .
15.某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x千米,个体车主收费y1元,国营出租车公司收费为y2元,观察下列图象可知,当x 时,选用个体车较合算.
16.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为 .
17.如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为 .
三.解答题(共8小题,满分62分)
18.(6分)解不等式组,并判断是否为该不等式组的解.
19.(6分)解方程:+=﹣1.
20.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.
21.(8分)在Rt△ABC中,∠C=90°,AC=6,BC=8.在CB上找一点E,使EB=EA(利用尺规作图,保留作图痕迹),并求出此时CE的长.
22.(8分)如图,四边形ABCD中,∠A=∠ABC=90°,AD=3,BC=5,E是边CD的中点,连结BE并延长与AD的延长线相交于点F.
(1)求证:四边形BDFC是平行四边形.
(2)若BD=BC,求四边形BDFC的面积.
23.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;
(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;
(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.
24.(10分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.
(1)求甲、乙两个工程队每天各修路多少千米?
(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?
25.(10分)如图,在平面直角坐标系中,已知点A(0,2),△AOB为等边三角形,P是x轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形△APQ.
(1)求点B的坐标;
(2)在点P的运动过程中,∠ABQ的大小是否发生改变?如不改变,求出其大小;如改变,请说明理由.
(3)连接OQ,当OQ∥AB时,求P点的坐标.
参考答案
一.选择题(共10小题,满分30分,每小题3分)
1.解:A、不是轴对称图形,是中心对称图形,故此选项错误;
B、不是轴对称图形,是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、是轴对称图形,也是中心对称图形,故此选项正确.
故选:D.
2.解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;
B、根据不等式的性质2,可得>,故B选项正确;
C、根据不等式的性质1,可得x+3>y+3,故C选项正确;
D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;
故选:D.
3.解:要使分式有意义,
则x﹣2≠0,
解得x≠2.
故选:D.
4.解:不等式x<﹣2的解集在数轴上表示为,
故选:D.
5.解:根据因式分解的概念,A,C答案错误;
根据平方差公式:(x+y)(x﹣y)=x2﹣y2所以D错误;
B答案正确.
故选:B.
6.解:多边形的外角和是360°,根据题意得:
180°•(n﹣2)=3×360°
解得n=8.
故选:C.
7.解:去分母得:x﹣2(x﹣1)=k,
去括号得:x﹣2x+2=k,
解得:x=2﹣k,
由分式方程的解为正数,得到2﹣k>0,且2﹣k≠1,
解得:k<2且k≠1,
故选:D.
8.解:∵四边形ABCD是平行四边形,
∴DO=OB,∠ABC=∠ADC=50°,
∵DO=OB,DE=EC,
∴OE∥BC,
∴∠ACB=∠COE=30°,
∴∠BAC=180°﹣50°﹣30°=100°,
故选:C.
9.解:在▱MNEF中,点F和N关于原点对称,∵点F的坐标是(3,2),∴点N的坐标是(﹣3,﹣2).
10.解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,
∴∠ADE=∠DAE=60°=∠AED,
∴△ADE是等边三角形,
∴AD=AE=AB,
∴E是AB的中点,
∴DE=BE,
∴∠BDE=∠AED=30°,
∴∠ADB=90°,即AD⊥BD,
∴S▱ABCD=AD•BD,故①正确;
∵∠CDE=60°,∠BDE=30°,
∴∠CDB=∠BDE,
∴DB平分∠CDE,故②正确;
∵Rt△AOD中,AO>AD,
∴AO>DE,故③错误;
∵E是AB的中点,BO=DO,
∴OE=AD
故④正确
故选:C.
二.填空题(共7小题,满分28分,每小题4分)
11.解:1﹣x2=(1+x)(1﹣x).
故答案为:(1+x)(1﹣x).
12.解:将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是(1,2),
故答案为(1,2).
13.解:∵AB=CB,BE⊥AC,
∴AD=DC,∠ABD=∠CBD=∠ABC=×54°=27°,
在△ABD和△CED中,
,
∴△ABD≌△CED(SAS),
∴∠E=∠ABD=27°,
故答案为:27°.
14.解:∵a+b=3,ab=2,
∴a3b+2a2b2+ab3
=ab(a2+2ab+b2)
=ab(a+b)2
=2×32
=18
故答案为:18.
15.解:根据图象可以得到当x>1500千米时,y1<y2,则选用个体车较合算.
故答案是:>1500.
16.解:过P作PE⊥OB,交OB与点E,
∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,
∴PD=PE,
∵PC∥OA,
∴∠CPO=∠POD,
又∠AOP=∠BOP=15°,
∴∠CPO=∠BOP=15°,
又∠ECP为△OCP的外角,
∴∠ECP=∠COP+∠CPO=30°,
在直角三角形CEP中,∠ECP=30°,PC=4,
∴PE=PC=2,
则PD=PE=2.
故答案为:2.
17.解:∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°﹣120°﹣30°=30°,
又∵∠3=60°,
∴∠5=180°﹣60°﹣30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=a,
∴A2B1=a,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4a,
A4B4=8B1A2=8a,
A5B5=16B1A2=16a,
以此类推:A6B6=32B1A2=32a.
故答案是:32a.
三.解答题(共8小题,满分62分)
18.解:,
由①得x>﹣3,
由②得x≤1,
∴原不等式组的解集是﹣3<x≤1.
∵>1,
∴不是该不等式组的解.
19.解:两边都乘以(x+1)(x﹣1),得:4﹣(x+2)(x+1)=﹣(x+1)(x﹣1),
解得:x=,
检验:当x=时,(x+1)(x﹣1)≠0,
所以原分式方程的解为x=.
20.解:原式=(+)•
=•
=2(x+2)
=2x+4,
当x=﹣时,
原式=2×(﹣)+4
=﹣1+4
=3.
21.解:如图,点E为所作;
设CE=x,则EA=EB=8﹣x
在Rt△ABC中,∵AC2+CE2=AE2,
∴62+x2=(8﹣x)2,解得x=
即CE=.
22.(1)证明:∵∠A=∠ABC=90°,
∴BC∥AD,
∴∠CBE=∠DFE,
又∵E是边CD的中点,
∴CE=DE,
在△BEC与△FED中,,
∴△BEC≌△FED,
∴BE=FE
∴四边形BDFC是平行四边形;
(2)解:∵BD=BC=5,
∴AB===4,
∴四边形BDFC的面积=BC•AB=5×4=20.
23.解:(1)如图,△A1B1C1为所作,
因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),
所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,
所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);
(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,
所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);
(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);
24.解:
(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,
根据题意,可列方程:1.5×=,
解得x=1.5,
经检验x=1.5是原方程的解,且x﹣0.5=1,
答:甲每天修路1.5千米,则乙每天修路1千米;
(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,
∴乙需要修路=15﹣1.5a(天),
由题意可得0.5a+0.4(15﹣1.5a)≤5.2,
解得a≥8,
答:甲工程队至少修路8天.
25.解:(1)如图1,过点B作BC⊥x轴于点C,
∵△AOB为等边三角形,且OA=2,
∴∠AOB=60°,OB=OA=2,
∴∠BOC=30°,而∠OCB=90°,
∴BC=OB=1,OC=,
∴点B的坐标为B(,1);
(2)∠ABQ=90°,始终不变.理由如下:
∵△APQ、△AOB均为等边三角形,
∴AP=AQ、AO=AB、∠PAQ=∠OAB,
∴∠PAO=∠QAB,
在△APO与△AQB中,
,
∴△APO≌△AQB(SAS),
∴∠ABQ=∠AOP=90°;
(3)当点P在x轴负半轴上时,点Q在点B的下方,
∵AB∥OQ,∠BQO=90°,∠BOQ=∠ABO=60°.
又OB=OA=2,可求得BQ=,
由(2)可知,△APO≌△AQB,
∴OP=BQ=,
∴此时P的坐标为(﹣,0).
当点P在x轴正半轴时,点Q必在第一象限,OQ和AB不可能平行;