终身会员
搜索
    上传资料 赚现金

    2020届安徽省淮南市高三第一次模拟考试数学(理)试题(解析版)

    立即下载
    加入资料篮
    2020届安徽省淮南市高三第一次模拟考试数学(理)试题(解析版)第1页
    2020届安徽省淮南市高三第一次模拟考试数学(理)试题(解析版)第2页
    2020届安徽省淮南市高三第一次模拟考试数学(理)试题(解析版)第3页
    还剩16页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020届安徽省淮南市高三第一次模拟考试数学(理)试题(解析版)

    展开

    2020届安徽省淮南市高三第一次模拟考试数学(理)试题

     

     

    一、单选题

    1.若集合,则   

    A B C D

    【答案】C

    【解析】先求出集合,集合中元素的范围,然后求交集即可.

    【详解】

    解:由已知

    故选:C.

    【点睛】

    本题考查集合的交集运算,是基础题.

    2.已知为虚数单位,若复数是纯虚数,则a的值为(   

    A B0 C1 D2

    【答案】A

    【解析】利用复数的运算法则、纯虚数的定义即可得出.

    【详解】

    为纯虚数.

    所以

    故选:A

    【点睛】

    本题考查了复数的运算法则、纯虚数的定义,属于基础题.

    3.已知ab都是实数,那么的(   

    A.充要条件 B.充分不必要条件

    C.必要不充分条件 D.既不充分也不必要条件

    【答案】B

    【解析】利用对数函数的单调性、不等式的性质即可判断出结论.

    【详解】

    都是实数,由成立,反之不成立,例如.

    所以的充分不必要条件.

    故选:B

    【点睛】

    本题考查了对数函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.

    4.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.己知的顶点,且,则的欧拉线方程为(   

    A B C D

    【答案】D

    【解析】由于,可得:的外心、重心、垂心都位于线段的垂直平分线上,求出线段的垂直平分线,即可得出的欧拉线的方程.

    【详解】

    因为,可得:的外心、重心、垂心都位于线段的垂直平分线上

    ,则的中点为

    ,

    所以的垂直平分线的方程为:,即.

    故选:D

    【点睛】

    本题考查等腰三角形的性质、三角形的外心重心垂心性质,考查了对新知识的理解应用,属于中档题.

    5.淮南市正在创建全国文明城市,某校数学组办公室为了美化环境,购买了5盆月季花和4盆菊花,各盆大小均不一样,将其中4盆摆成一排,则至多有一盆菊花的摆法种数为(   

    A960 B1080 C1560 D3024

    【答案】B

    【解析】分两类:第一类一盆菊花都没有,第二类只有一盆菊花,将两类种数分别算出相加即可.

    【详解】

    解:一盆菊花都没有的摆法种数为,只有一盆菊花的摆法种数为

    则至多有一盆菊花的摆法种数为

    故选:B.

    【点睛】

    本题考查分类加法原理,考查排列组合数的计算,是基础题.

    6.函数的大致图象为(   

    A B

    C D

    【答案】C

    【解析】得到为偶函数,所以当时,,求导讨论其单调性,分析其极值就可以得到答案.

    【详解】

    因为

    所以为偶函数, 则当时,.

    此时

    时,    时,.

    所以上单调递减,在上单调递增.

    上,当时函数有最小值..

    为偶函数,根据选项的图像C符合.

    故选:C

    【点睛】

    本题考查根据函数表达式选择其图像的问题,这类问题主要是分析其定义域、值域、奇偶性、对称性、单调性和一些特殊点即可,属于中档题.

    7.在中, ,点满足,点的外心,则的值为(   

    A17 B10 C D

    【答案】D

    【解析】用向量表示出来,再代入得,,求出代入即可得出答案.

    【详解】

    的中点,连接

    因为的外心,

    同理可得

    故选:D.

    【点睛】

    本题考查数量积的运算,关键是要找到一对合适的基底表示未知向量,是中档题.

    8.已知的展开式中所有项的系数和等于,则展开式中项的系数的最大值是(   

    A B C7 D70

    【答案】C

    【解析】,可得,将展开式中的奇数项求出来,观察大小即可得答案.

    【详解】

    解:令得,

    的展开式通项公式为

    要求展开式中项的系数的最大值则必为偶数,

    故选:C.

    【点睛】

    本题考查二次项定理的应用,其中赋值法求出很关键,是基础题.

    9.已知双曲线的左右焦点分别为,过点的直线交双曲线右支于两点,若是等腰三角形,且.则的周长为(   

    A B C D

    【答案】A

    【解析】利用双曲线的定义以及三角形结合正弦定理,转化求解三角形的周长即可.

    【详解】

    双曲线的焦点在轴上,则
    ,由双曲线的定义可知:
    由题意可得:
    据此可得:,又 ,
    由正弦定理有:,

    所以,解得:

    所以的周长为:

    =

    故选:A

    【点睛】

    本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.

    10.已知是函数)的一个零点,将的图象向右平移个单位长度,所得图象关于轴对称,则函数的单调递增区间是(   

    A B

    C D

    【答案】D

    【解析】通过条件可得,结合可求出,即可得,令,求出的范围即为函数的单调递增区间.

    【详解】

    解:由已知,得

    ,即

    所得图象关于轴对称,

    ,将代入消去

    时,

    故选:D.

    【点睛】

    本题考查三角函数的图像和性质,考查计算能力和分析能力,是中档题.

    11.已知是函数的极值点,数列满足,记表示不超过的最大整数,则   

    A1008 B1009 C2018 D2019

    【答案】A

    【解析】利用函数的导数通过函数的极值,得到数列的递推关系式,求出数列的通项公式,化简数列求和,推出结果即可.

    【详解】

    解:是函数的极值点,
    可得:


    累加可得


    .
    故选:A.

    【点睛】

    本题考查数列递推式求通项公式,以及数列求和的应用,考查分析问题解决问题的能力,是中档题.

    12.己知的图象有三个不同的公共点,则实数的取值范围是(   

    A B C D

    【答案】C

    【解析】依题意,方程有三个不相等的实根,令,利用导数研究函数的单调性及最值情况,再分类讨论得解.

    【详解】

    解:方程即为

    则方程有三个不相等的实根,
    ,且
    函数上单增,在上单减,

    ,且时,时,
    方程的两个根的情况是:
    i)若,则的图象有四个不同的公共点,不合题意;
    ii)若,则的图象有三个不同的公共点,

    ,则,此时另一根为,舍去;

    ,则,此时另一根为,舍去;
    iii)若,则的图象有三个不同的公共点,

    ,则,解得.
    故选:C.

    【点睛】

    本题考查函数图像的交点与方程根的关系,考查分类讨论思想,旨在锻炼学生的推理论证能力,属于中档题.

     

     

    二、填空题

    13.已知,则的值为______

    【答案】

    【解析】根据角的范围,先求出的值,然后用角变换可求解.

    【详解】

    所以

    故答案为:

    【点睛】

    本题考查同角三角函数的关系和利用角变换求解三角函数值,属于中档题.

    14.若实数满足,且的最小值为1,则实数的值为__________

    【答案】

    【解析】画出不等式组表示的可行域,根据目标函数得出取最优解时点的坐标,再根据分析列出含有参数的方程组,由最小值求出的值.

    【详解】

    解:不等式组表示的可行域如图所示:必有





    由图可得,当目标函数过点时,有最小值;

    解得
    故答案为:.

    【点睛】

    本题考查了约束条件中含有参数的线性规划问题,解题时应先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),解出代入目标式,即可求出参数的值.

    15.已知函数,满足均为正实数),则的最小值为_____________

    【答案】

    【解析】通过题目发现,然后利用倒序相加法求出,将转化为,展开,利用基本不等式即可求得最值.

    【详解】

    解:

    两式相加得:

    故答案为:.

    【点睛】

    本题考查了利用基本不等式求最值,关键是要发现以及倒序相加求和,难度不大.

    16.设抛物线的焦点为,过点的直线与抛物线交于两点,且,点是坐标原点,则的面积为____________

    【答案】

    【解析】由题意不妨设直线的方程为,联立直线与抛物线方程,然后结合可得,结合方程的根与系数关系及向量的坐标表示可求,然后根据求面积即可.

    【详解】

    解:解:由题意不妨设直线的方程为
    联立方程可得,





    ,即

    故答案为:.

    【点睛】

    本题主要考查了直线与抛物线的位置关系的应用,解题的关键是坐标关系的应用,属于中档试题.

     

    三、解答题

    17.在中,角ABC的对边分别为abc

    )求角C的大小;

    )已知点P在边BC上,,求的面积.

    【答案】;(

    【解析】)由正弦定理可得,可得答案.|
    )由条件为等边三角形,则,由余弦定理得,,可得,从而得到三角形的面积.

    【详解】

    ,由正弦定理可得

    A内角,

    )根据题意,为等边三角形,又

    中,由于余弦定理得,

    解得,

    的面积

    【点睛】

    本题考查正弦和余弦定理以及求三角形的面积,属于中档题.

    18.已知等差数列的首项为1,公差为1,等差数列满足

    1)求数列和数列的通项公式;

    2)若,求数列的前项和

    【答案】12

    【解析】1)由等差数列的通项公式及对数的运算可得数列的通项公式,根据条件中的递推式求出,利用它们成等差数列列方程求出,进而可得数列的通项公式;

    2)利用错位相减法求数列的前项和.

    【详解】

    解:(1)由条件可知,.

    .

    由题意为等差数列,,解得

    2)由(1)知,

    ①-②可得

    .

    【点睛】

    本题考查等差数列通项公式的求解,考查错位相减法求和,是基础题.

    192018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:

    研发费用(百万元)

    2

    3

    6

    10

    13

    15

    18

    21

    销量(万盒)

    1

    1

    2

    2.5

    3.5

    3.5

    4.5

    6

     

     

     

    1)求的相关系数精确到0.01,并判断的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);

    2)该药企准备生产药品的三类不同的剂型,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型合格的概率分别为,第二次检测时,三类剂型合格的概率分别为.两次检测过程相互独立,设经过两次检测后三类剂型合格的种类数为,求的数学期望.

    附:(1)相关系数

    2

    【答案】10.98;可用线性回归模型拟合.(2

    【解析】1)根据题目提供的数据求出,代入相关系数公式求出,根据的大小来确定结果;

    2)求出药品的每类剂型经过两次检测后合格的概率,发现它们相同,那么经过两次检测后三类剂型合格的种类数为服从二项分布,利用二项分布的期望公式求解即可.

    【详解】

    解:(1)由题意可知

    由公式

    的关系可用线性回归模型拟合;

    2)药品的每类剂型经过两次检测后合格的概率分别为

    由题意,

    .

    【点睛】

    本题考查相关系数的求解,考查二项分布的期望,是中档题.

    20.已知椭圆的离心率为分别是椭圆的左右焦点,过点的直线交椭圆于两点,且的周长为12

    )求椭圆的方程

    )过点作斜率为的直线与椭圆交于两点,试判断在轴上是否存在点,使得是以为底边的等腰三角形若存在,求点横坐标的取值范围,若不存在,请说明理由.

    【答案】1;(2)存在,

    【解析】)由椭圆的离心率为的周长为12可得,可求椭圆方程.
    的中点为,由条件有,即,,用直线的斜率把表示出来,可求解其范围.

    【详解】

    1)由题意可得,所以,所以椭圆的方程为.

    2)直线的解析式为,设的中点为.假设存在点,使得为以为底边的等腰三角形,则.由

    ,所以

    因为,所以,即,所以

    时,,所以

    时,,所以

    综上:m取值范围是.

    【点睛】

    本题考查由椭圆的几何性质求方程,满足条件的动点的坐标的范围的探索,属于难题.

    21.已知函数,在区间有极值.

    1)求的取值范围;

    2)证明:

    【答案】12)见解析

    【解析】1在区间有极值转化为在区间上不是单调函数,利用导数,分类讨论,研究[1,2]上的单调性即可;

    2)将证明转化为证明.先证,然后再证,进而可得.

    【详解】

    解:(1)由

    时,,所以[1,2]上单调递增,无极值;

    时,,所以[1,2]上单调递减,无极值;

    ,由;由,所以上单调递减,在上单调递增,符合题意,

    2)要证成立,只需证成立,即证

    先证:.,则,所以上单调递减,在上单调递增,

    所以

    因为,所以,则,即

    再证:.,则.所以上单调递增,则,即.因为,所以

    ①②,所以.

    【点睛】

    本题考查函数极值的存在性问题,考查函数不等式的证明,关键是要将问题进行转化,考查计算能力,是一道难度较大的题目.

    22.在直角坐标系中,直线,圆,以坐标原点为极点,轴正半轴为极轴建立极坐标系.

    1)求的极坐标方程;

    2)若直线的极坐标方程为,设的交点为,求的面积.

    【答案】(1),(2)

    【解析】试题分析:1)将代入的直角坐标方程,化简得;(2)将代入,得, 所以,进而求得面积为.

    试题解析:

    1)因为,所以的极坐标方程为

    的极坐标方程为

    2)将代入

    , 所以

    因为的半径为1,则的面积为

    【考点】坐标系与参数方程.

     

    23    已知函数f(x)|xa||x2|.

    (1)a=-3时,求不等式f(x)≥3的解集;

    (2)f(x)≤|x4|的解集包含[12],求a的取值范围.

    【答案】(1) {x|x≥4x≤1}(2) [30].

    【解析】试题分析:1)解绝对值不等式首先分情况去掉绝对值不等式组,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于-2-x≤a≤2-x[12]上恒成立,由此求得求a的取值范围

    试题解析:(1)当a=-3时,fx)=

    x≤2时,由fx≥3得-2x5≥3,解得x≤1

    2x3时,fx≥3无解;

    x≥3时,由fx≥32x5≥3,解得x≥4.

    所以fx≥3的解集为{x|x≤1x≥4}                 6

    2fx≤|x4||x4||x2|≥|xa|.

    x∈[12]时,|x4||x2|≥|xa|4x)-(2x≥|xa|

    2a≤x≤2a

    由条件得-2a≤12a≥2,解得-3≤a≤0

    故满足条件的实数a的取值范围为[30]

    【考点】绝对值不等式的解法;带绝对值的函数

     

     

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map