所属成套资源:2020全国新高考培优高考仿真模拟
2020全国新高考培优高考仿真模拟(二)文科数学(解析版) 试卷
展开
2020高考仿真模拟(二)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知i为虚数单位,则i+i2+i3+…+i2019等于( )
A.i B.1
C.-i D.-1
答案 D
解析 由于i+i2+i3+i4=i-1-i+1=0,且in(n∈N*)的周期为4,2019=4×504+3,所以原式=i+i2+i3=i-1-i=-1.故选D.
2.集合A={y|y=2cos2x+1},B={x|log2(x+2)<2},则A∩B=( )
A.(-2,3] B.(0,2]
C.[1,2) D.(2,3]
答案 C
解析 因为A={y|y=2cos2x+1}={y|y=cos2x+2}=[1,3],B={x|log2(x+2)<2}={x|0<x+2<4}=(-2,2),所以A∩B=[1,2),故选C.
3.“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是( )
A.m> B.0<m<1
C.m>0 D.m>1
答案 C
解析 若不等式x2-x+m>0在R上恒成立,则Δ=(-1)2-4m<0,解得m>,因此当不等式x2-x+m>0在R上恒成立时,必有m>0,但当m>0时,推不出m>,即推不出不等式x2-x+m>0在R上恒成立,故所求的必要不充分条件可以是m>0.
4.某店主为装饰店面打算做一个两色灯牌,从黄、白、蓝、红4种颜色中任意挑选2种颜色,则所选颜色中含有白色的概率是( )
A. B. C. D.
答案 B
解析 从黄、白、蓝、红4种颜色中任意选2种颜色的所有基本事件有{黄,白},{黄,蓝},{黄,红},{白,蓝},{白,红},{蓝,红},共6种,这6种基本事件发生的可能性是相等的.其中包含白色的有3种,所以选中白色的概率为,故选B.
5.《周髀算经》是我国古代的天文学和数学著作.其中有一个问题大意为:一年有二十四个节气,每个节气晷长损益相同(即太阳照射物体影子的长度增加和减少大小相同).二十四个节气及晷长变化如图所示,若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:一丈等于十尺,一尺等于十寸),则夏至后的那个节气(小暑)晷长为( )
A.五寸 B.二尺五寸
C.三尺五寸 D.四尺五寸
答案 B
解析 设从夏至到冬至的晷长依次构成等差数列{an},公差为d,a1=15,a13=135,则15+12d=135,解得d=10.∴a2=15+10=25,∴《周髀算经》中所记录的小暑的晷长是25寸,即二尺五寸.故选B.
6.函数f(x)=cosx的图象的大致形状是( )
答案 B
解析 ∵f(x)=cosx,∴f(-x)=cos(-x)=-cosx=-f(x),∴函数f(x)为奇函数,其图象关于原点对称,排除A,C;又当x∈时,ex>e0=1,-1<0,cosx>0,∴f(x)<0,排除D,故选B.
7.已知函数f(x)=Asin(ωx+φ)·e-|x|(A>0,ω>0,0