年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    福建省2020届高三考前冲刺适应性模拟卷(三)数学(理)试题

    福建省2020届高三考前冲刺适应性模拟卷(三)数学(理)试题第1页
    福建省2020届高三考前冲刺适应性模拟卷(三)数学(理)试题第2页
    福建省2020届高三考前冲刺适应性模拟卷(三)数学(理)试题第3页
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省2020届高三考前冲刺适应性模拟卷(三)数学(理)试题

    展开

    福建省2020届高三数学考前冲刺适应性模拟卷理 科 数 学(三)(福建省高三毕业班复习教学指导组  福州一中执笔整理  一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。集合A = { x | x < a}B = { x | 1 < x < 2},若,则实数a的取值范围是A B C D2. 复数为虚数单位),则复数的共轭复数为A             B          C              D3. 等于A0        B       C        D2 4.若函数的定义域是,则函数的定义域是A       B       C       D5. 数列的前n项和为,若,则A20      B15      C10      D.-5  6. 已知某几何体的三视图如图所示,则该几何体的体积为A  B  C  D7.在区间上随机取一个数,使直线与圆相交的概率为A.       B.       C.      D.8. 向量abc满足a + b + c = 0ab(ab)c,则M =
    A3      B      C      D9.已知正方体的棱长为分别为的中点,是线段上的动点,与平面的交点的轨迹长为A.       B.       C.       D. 10. 已知曲线处的切线为,曲线处的切线为,且,则的取值范围是A.    B.    C.    D. 11. 某化工厂在定期检修设备时发现生产管道中共有5处阀门()发生有害气体泄漏。每处阀门在每小时内有害气体的泄露量大体相等,约为0.01立方米。阀门的修复工作可在不停产的情况下实施。由于各阀门所处的位置不同,因此修复所需的时间不同,且修复时必须遵从一定的顺序关系,具体情况如下表:泄露阀门修复时间(小时)118596需先修复好的阀门在只有一个阀门修复设备的情况下,合理安排修复顺序,泄露的有害气体总量最小为A1.14立方米  B. 1.07立方米   C. 1.04立方米    D. 0.39立方米 12. 是常数,对于,都有A.     B.     C.     D  二.填空题:本大题共4小题,每小题5分,共20分。请将答案填在答题卡对应题号的位置上。答错位置,书写不清,模棱两可均不得分。13. _________. 14. 寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有          . 15. 如图,将地球近似看作球体。设地球表面某地正午太阳高度角为为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),为该地的纬度值。已知太阳每年直射范围在南北回归线之间,即。如果在北京地区(纬度数约为北纬)的一幢高为的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于_________.(只需列出式子)16. 已知椭圆的焦点是上(不在长轴上)的两点,且的交点,则的轨迹所在的曲线是______;离心率为_____.三.解答题:解答应写出文字说明,证明过程或演算步骤。17. (本小题满分12)已知数列满足的前项和为,前项积为.1)证明:是定值;2)试比较的大小。   18. (本小题满分12)已知圆,设为圆轴负半轴的交点,过点作圆的弦,并使弦的中点恰好落在轴上。1求点的轨迹的方程;2延长交直线于点,延长交曲线于点,曲线在点处的切线与轴交于点。求证:   19. (本小题满分12)如图,组合体由半个圆锥和一个三棱锥构成,其中是圆锥底面圆心,是圆弧上一点,满足是锐角,1)在平面内过点平面于点,并写出作图步骤,但不要求证明;2)在(1)中,若中点,且,求直线与平面所成角的正弦值 20. (本小题满分12)已知6某疾病病毒密切接触者中有1名感染病毒,其余5名健康,需要通过化验血液来确定感染者.血液化验结果呈阳性的即为感染者,呈阴性即为健康.1若从这6密切接触者中随机抽取3名,求抽到感染的概率;2血液化验确定感染者的方法有:逐一化验;分组混合化验:先将血液分成若干组,对组内血液混合化验,若化验结果呈阴性,则该组血液不含病毒;若化验结果呈阳性,则对该组的备份血液逐一化验,直至确定感染者i)采取逐一化验,求所需检验次数的数学期望;ii)采取平均分组混合化验(每组血液份数相同),依据所需化验次数的期望,选择合理的平均分组 21. (本小题满分12)已知函数1)讨论函数的单调性;2)若存在直线,使得对任意的,对任意的,求的取值范围。       请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22[选修4—4:坐标系与参数方程]10分)在直角坐标系中,曲线的参数方程为,以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为1)求曲线的普通方程和的直角坐标方程;2)已知曲线的交点为,求的值。  23[选修4—5:不等式选讲]10分)已知 1)若的最小值;2)若,求实数的取值范围.
    福建省2020届高三数学考前冲刺适应性模拟卷(理科数学)参考答案CBDCA   ACDBB  CA13.    14.45    15.   16. 椭圆, 17. 1)证明:依题意……2所以…………4,所以…………62…………8因为,所以单调递增。…………6又因为,所以当时,…………10所以当时,时,…………1218. 解:(1)设,依题意,满足,消所以………………52)设,将代入………………7,令,所以………………8因为,所以点处的切线为,即,所以.………………10所以的斜率所以………………1219. 解法一:(1延长的延长线于点····································2连接·················································3过点于点··········································52)若中点,则中点,又因为,所以,所以,从而.·······················6依题意,两两垂直,分别以轴建立空间直角坐标系, 从而·····························································8设平面的法向量为,得.·······················································10所以直线与平面所成角的正弦值为····································1220. 解:(1 ………………32)(i的可能取值是12345,且分布列如下: 12345 ………………6ii)首先考虑(33)分组,所需化验次数为的可能取值是23分布列如下: 23 ………………9再考虑(222)分组,所需化验次数为的可能取值是23分布列如下: 23 所以按(222)或(33)分组进行化验均可………………12 21. 解:(1………………1i)若,则………………2ii)若,则由,由综上:当时,上单调递增;时,上单调递增,在上单调递减;…………42)设存在满足题意。   i)由,即,得所以………………5   ii)令………………6,则单调递增,,不合题意;               ………………7,则上单调递增,在上单调递减,所以………………8所以,即由(i)得………………9………………10,所以单调递增,又因为,所以是单调递减,是单调递减,所以,所以 ………………1222解:(1………………52)设对应的直线参数为代入,故………………8轴上方, 轴下方,………………10 23.解:(1………………3………………52)令………………7此时所以………………10 

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map