年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2019届二轮复习第九章第6节 双曲线学案(全国通用)

    2019届二轮复习第九章第6节 双曲线学案(全国通用)第1页
    2019届二轮复习第九章第6节 双曲线学案(全国通用)第2页
    2019届二轮复习第九章第6节 双曲线学案(全国通用)第3页
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2019届二轮复习第九章第6节 双曲线学案(全国通用)

    展开

    第6节 双曲线
    最新考纲 了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).

    知 识 梳 理
    1.双曲线的定义
    平面内与两个定点F1,F2(|F1F2|=2c>0)的距离差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.其数学表达式:集合P={M |MF1|-|MF2 =2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:
    (1)若ac时,则集合P为空集.
    2.双曲线的标准方程和几何性质
    标准方程
    -=1
    (a>0,b>0)
    -=1
    (a>0,b>0)
    图 形


    性 质
    范围
    x≥a或x≤-a,y∈R
    x∈R,y≤-a或y≥a
    对称性
    对称轴:坐标轴;对称中心:原点
    顶点
    A1(-a,0),A2(a,0)
    A1(0,-a),A2(0,a)
    渐近线
    y=±x
    y=±x
    离心率
    e=,e∈(1,+∞)
    实虚轴
    线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长
    a,b,c的关系
    c2=a2+b2
    [常用结论与微点提醒]
    1.过双曲线的一个焦点且与实轴垂直的弦的长为.
    2.离心率e===.
    3.等轴双曲线的渐近线互相垂直,离心率等于.
    诊 断 自 测
    1.思考辨析(在括号内打“√”或“×”)
    (1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.(  )
    (2)平面内到点F1(0,4),F2(0,-4)距离之差等于6的点的轨迹是双曲线.(  )
    (3)方程-=1(mn>0)表示焦点在x轴上的双曲线.(  )
    (4)双曲线-=λ(m>0,n>0,λ≠0)的渐近线方程是-=0,即±=0.(  )
    解析 (1)因为 MF1|-|MF2 =8=|F1F2|,表示的轨迹为两条射线.
    (2)由双曲线的定义知,应为双曲线的一支,而非双曲线的全部.
    (3)当m>0,n>0时表示焦点在x轴上的双曲线,而m<0,n<0时则表示焦点在y轴上的双曲线.
    答案 (1)× (2)× (3)× (4)√
    2.(2016·全国Ⅰ卷)已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(  )
    A.(-1,3) B.(-1,) C.(0,3) D.(0,)
    解析 ∵方程-=1表示双曲线,∴(m2+n)·(3m2-n)>0,解得
    -m20,b>0),则a2+b2=9,又点(,4)在双曲线上,所以-=1,解得a2=4,b2=5.故所求双曲线的方程为-=1.
    法三 设双曲线的方程为+=1(270).
    ∵渐近线方程为y=±x,
    其中一条渐近线的倾斜角为30°,
    ∴=,c=6,∴a2=9,b2=27.其方程为-=1.
    答案 (1)D (2)B
    考点三 双曲线的性质
    【例3】 (1)(2017·全国Ⅰ卷)已知双曲线C:-=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若∠MAN=60°,则C的离心率为 .
    (2)(2017·山东卷)在平面直角坐标系xOy中,双曲线-=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为 .
    解析 (1)如图,点M,N所在的渐近线为ay-bx=0,圆A的圆心A(a,0)到渐近线的距离d=,又M,N均为圆A上的点,∴|AM|=|AN|=b,又∠MAN=60°,∴△MAN为等边三角形,在△MAN内,A到边MN的距离为d=|AM|·
    cos 30°=b,即=b,解得a2=3b2,∴e===.
    (2)设A(x1,y1),B(x2,y2),
    联立方程:消去x得a2y2-2pb2y+a2b2=0,
    由根与系数的关系得y1+y2=p,
    又∵|AF|+|BF|=4|OF|,∴y1++y2+=4×,即y1+y2=p,∴p=p,即=⇒=.

    ∴双曲线渐近线方程为y=±x.
    答案 (1) (2)y=±x
    规律方法 1.双曲线的几何性质中重点是渐近线方程和离心率,在双曲线-=1(a>0,b>0)中,离心率e与双曲线的渐近线的斜率k=±满足关系式e2=1+k2.
    2.求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a,b,c的方程或不等式,利用b2=c2-a2和e=转化为关于e的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.
    【训练3】 (1)(2017·全国Ⅱ卷)若a>1,则双曲线-y2=1的离心率的取值范围是(  )
    A.(,+∞) B.(,2)
    C.(1,) D.(1,2)
    (2)(2015·全国Ⅰ卷)已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点,若·1,所以10)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为(  )
    A.2 B. C. D.
    解析 设双曲线的一条渐近线方程为y=x,化成一般式bx-ay=0,圆心(2,0)到直线的距离为=,
    又由c2=a2+b2得c2=4a2,e2=4,e=2.
    答案 A
    4.(2018·成都诊断)过双曲线x2-=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|=(  )
    A. B.2
    C.6 D.4
    解析 由题意知,双曲线x2-=1的渐近线方程为y=±x,将x=c=2代入得y=±2,即A,B两点的坐标分别为(2,2),(2,-2),所以|AB|=4.
    答案 D
    5.已知F1,F2分别为双曲线-=1的左、右焦点,P(3,1)为双曲线内一点,点A在双曲线上,则|AP|+|AF2|的最小值为(  )
    A.+4 B.-4
    C.-2 D.+2
    解析 由题意知,|AP|+|AF2|=|AP|+|AF1|-2a,要求|AP|+|AF2|的最小值,只需求|AP|+|AF1|的最小值,
    当A,P,F1三点共线时,取得最小值,
    则|AP|+|AF1|=|PF1|=,
    ∴|AP|+|AF2|的最小值为|AP|+|AF1|-2a=-2.
    答案 C
    二、填空题
    6.(2017·全国Ⅲ卷)双曲线-=1(a>0)的一条渐近线方程为y=x,则a= .
    解析 由双曲线的标准方程可得渐近线方程为y=±x,结合题意可得:a=5.
    答案 5
    7.已知双曲线-=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为 .


    解析 根据题意画出草图如图所示
    .
    由△AOF是边长为2的等边三角形得到∠AOF=60°,
    c=|OF|=2.
    又点A在双曲线的渐近线y=x上,∴=tan 60°=.
    又a2+b2=4,∴a=1,b=,
    ∴双曲线的方程为x2-=1.
    答案 x2-=1
    8.(2018·梅州质检)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点.P是双曲线在第一象限上的点,直线PO,PF2分别交双曲线C左、右支于M,N.若|PF1|=2|PF2|,且∠MF2N=60°,则双曲线C的离心率为 .
    解析 由题意,|PF1|=2|PF2|,由双曲线的定义可得,|PF1|-|PF2|=2a,可得|PF1|=4a,|PF2|=2a,又|F1O|=|F2O|,|PO|=|MO|,得四边形PF1MF2为平行四边形,又∠MF2N=60°,可得∠F1PF2=60°,在△PF1F2中,由余弦定理可得,4c2=16a2+4a2-2·4a·2a·cos 60°,即4c2=20a2-8a2,c2=3a2,可得c=a,所以e==.
    答案 
    三、解答题
    9.(2018·安徽江南十校联考)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点P(4,-).
    (1)求双曲线的方程;
    (2)(一题多解)若点M(3,m)在双曲线上,求证:·=0.
    (1)解 ∵e=,
    ∴可设双曲线的方程为x2-y2=λ(λ≠0).
    ∵双曲线过点(4,-),∴16-10=λ,即λ=6.
    ∴双曲线的方程为x2-y2=6.
    (2)证明 法一 由(1)可知,a=b=,
    ∴c=2,∴F1(-2,0),F2(2,0),
    ∴kMF1=,kMF2=,
    kMF1·kMF2==-.
    ∵点M(3,m)在双曲线上,∴9-m2=6,m2=3,
    故kMF1·kMF2=-1,∴MF1⊥MF2.∴·=0.
    法二 由(1)可知,a=b=,∴c=2,
    ∴F1(-2,0),F2(2,0),
    =(-2-3,-m),=(2-3,-m),
    ∴·=(3+2)×(3-2)+m2=-3+m2,
    ∵点M(3,m)在双曲线上,∴9-m2=6,即m2-3=0,
    ∴·=0.
    10.设A,B分别为双曲线-=1(a>0,b>0)的左、右顶点,双曲线的实轴长为4,焦点到渐近线的距离为.
    (1)求双曲线的方程;
    (2)已知直线y=x-2与双曲线的右支交于M,N两点,且在双曲线的右支上存在点D,使+=t,求t的值及点D的坐标.
    解 (1)由题意知a=2,
    ∵一条渐近线为y=x,即bx-ay=0.
    ∴由焦点到渐近线的距离为,得=.
    又∵c2=a2+b2,∴b2=3,
    ∴双曲线的方程为-=1.
    (2)设M(x1,y1),N(x2,y2),D(x0,y0),其中x0≥2.
    则x1+x2=tx0,y1+y2=ty0.
    将直线方程y=x-2代入双曲线方程-=1得x2-16x+84=0,
    则x1+x2=16,y1+y2=(x1+x2)-4=12.
    ∴解得
    ∴t=4,点D的坐标为(4,3).
    能力提升题组
    (建议用时:20分钟)
    11.(2018·湖北四地七校联考)双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,直线l经过点F1及虚轴的一个端点,且点F2到直线l的距离等于实半轴的长,则双曲线的离心率为(  )
    A. B.
    C. D.
    解析 根据题意知直线l的方程为y=x+b,即bx-cy+bc=0,因为点F2到直线l的距离等于实半轴的长,所以=a,即4c2(c2-a2)=a2(-a2+2c2),
    ∴4e4-6e2+1=0,解得e2=,
    ∴e=或e=-(舍去).
    答案 D
    12.(2018·武汉模拟)已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为 .
    解析 由题可知A1(-1,0),F2(2,0).
    设P(x,y)(x≥1),
    则=(-1-x,-y),=(2-x,-y),·=x2-x-2+y2=x2-x-2+3(x2-1)=4x2-x-5.
    因为x≥1,函数f(x)=4x2-x-5的图象的对称轴为x=,所以当x=1时,·取得最小值-2.
    答案 -2
    13.已知椭圆C1的方程为+y2=1,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
    (1)求双曲线C2的方程;
    (2)若直线l:y=kx+与双曲线C2恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.
    解 (1)设双曲线C2的方程为-=1(a>0,b>0),
    则a2=3,c2=4,再由a2+b2=c2,得b2=1.
    故C2的方程为-y2=1.
    (2)将y=kx+代入-y2=1,
    得(1-3k2)x2-6kx-9=0.
    由直线l与双曲线C2交于不同的两点,得

    ∴k2≠且k2<1.①
    设A(x1,y1),B(x2,y2),
    则x1+x2=,x1x2=-.
    ∴x1x2+y1y2=x1x2+(kx1+)(kx2+)
    =(k2+1)x1x2+k(x1+x2)+2=.
    又∵·>2,得x1x2+y1y2>2,
    ∴>2,即>0,解得<k2<3.②
    由①②得<k2<1,
    故k的取值范围为∪.

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map